for i, tri in enumerate(trimestres): # ano, membro, lat, lon y_season = np.full((itime, 20, 72, 109), np.nan) for a, y in enumerate(ltime): data_all, seaccum, monaccum, seamean, monmean, \ lats, lons = post.PostModel(fcst_month, ntrimetres[i], y, model='RSM97') # Faz o acumulado da estação r = 31 * len(ntrimetres[i]) data_all = np.nansum(np.swapaxes(data_all, 1, 2) \ .reshape(r, 20, 72, 109), axis=0) y_season[a, :] = data_all[:] y_season = np.swapaxes(y_season, 0, 1) # Usado no hindcast fname = 'pcp-seasonacc-rsm97-hind8110-{0}-8110-{1}.nc' \ .format(fcst_month, tri.upper()) writenc4(y_season, lats, lons, fname, itime, nmon[i]) # Usado no forecast # fname = 'pcp-seasonacc-rsm97-hind8110-{0}{2}_{2}{1}.nc' \ # .format(fcst_month, tri.upper(), y) # writenc4(y_season, lats, lons, fname, itime)
# Faz o acumulado da estação r = 31 * len(ntrimetres[i]) data_all = np.nansum(np.swapaxes(data_all, 1, 2) \ .reshape(r, 20, 72, 109), axis=0) y_season[a, :] = data_all[:] y_season = np.swapaxes(y_season, 0, 1) # Usado no hindcast yy = 1981 mm = ntrimetres[i][0] if mm > 12: yy = 1982 mm = mm - 12 fname = 'pcp-seasonacc-rsm97-hind8110-{0}-8110-{1}.nc' \ .format(fcst_month, tri.upper()) writenc4(y_season, lats, lons, fname, itime, fcst_month, mm, yy) fname = 'pcp-seasonacc-rsm97-hind8110-{0}-8110-{1}' \ .format(fcst_month, tri.upper()) np.save(fname, y_season) # Usado no forecast # fname = 'pcp-seasonacc-rsm97-hind8110-{0}{2}_{2}{1}.nc' \ # .format(fcst_month, tri.upper(), y) # writenc4(y_season, lats, lons, fname, itime) # raw_input('Enter...')