示例#1
0
def test_crop_rotated_celestial(ndcube_4d_ln_lt_l_t):
    # This is a regression test for a highly rotated image where all 4 corners
    # of the spatial ROI have to be used.

    header = dedent("""\
        WCSAXES =                    2 / Number of coordinate axes
        CRPIX1  =          2053.459961 / Pixel coordinate of reference point
        CRPIX2  =          2047.880005 / Pixel coordinate of reference point
        PC1_1   =     0.70734471922412 / Coordinate transformation matrix element
        PC1_2   =     0.70686876305701 / Coordinate transformation matrix element
        PC2_1   =    -0.70686876305701 / Coordinate transformation matrix element
        PC2_2   =     0.70734471922412 / Coordinate transformation matrix element
        CDELT1  =  0.00016652472222222 / [deg] Coordinate increment at reference point
        CDELT2  =  0.00016652472222222 / [deg] Coordinate increment at reference point
        CUNIT1  = 'deg'                / Units of coordinate increment and value
        CUNIT2  = 'deg'                / Units of coordinate increment and value
        CTYPE1  = 'HPLN-TAN'           / Coordinate type codegnomonic projection
        CTYPE2  = 'HPLT-TAN'           / Coordinate type codegnomonic projection
        CRVAL1  =                  0.0 / [deg] Coordinate value at reference point
        CRVAL2  =                  0.0 / [deg] Coordinate value at reference point
        LONPOLE =                180.0 / [deg] Native longitude of celestial pole
        LATPOLE =                  0.0 / [deg] Native latitude of celestial pole
        MJDREF  =                  0.0 / [d] MJD of fiducial time
        DATE-OBS= '2014-04-09T06:00:12.970' / ISO-8601 time of observation
        MJD-OBS =      56756.250150116 / [d] MJD of observation
        RSUN_REF=          696000000.0 / [m] Solar radius
        DSUN_OBS=      149860273889.04 / [m] Distance from centre of Sun to observer
        HGLN_OBS=  -0.0058904803279347 / [deg] Stonyhurst heliographic lng of observer
        HGLT_OBS=     -6.0489216362492 / [deg] Heliographic latitude of observer
        """)
    wcs = WCS(fits.Header.fromstring(header, sep="\n"))
    data = np.zeros((4096, 4096))

    cube = NDCube(data, wcs=wcs)

    bottom_left = SkyCoord(-100,
                           -100,
                           unit=u.arcsec,
                           frame=wcs_to_celestial_frame(wcs))
    bottom_right = SkyCoord(600,
                            -100,
                            unit=u.arcsec,
                            frame=wcs_to_celestial_frame(wcs))
    top_left = SkyCoord(-100,
                        600,
                        unit=u.arcsec,
                        frame=wcs_to_celestial_frame(wcs))
    top_right = SkyCoord(600,
                         600,
                         unit=u.arcsec,
                         frame=wcs_to_celestial_frame(wcs))

    small = cube.crop(bottom_left, bottom_right, top_left, top_right)

    assert small.data.shape == (1652, 1652)
示例#2
0
def ndcube_3d_rotated(wcs_3d_ln_lt_t_rotated, simple_extra_coords_3d):
    data_rotated = np.array([[[1, 2, 3, 4, 6], [2, 4, 5, 3, 1],
                              [0, -1, 2, 4, 2], [3, 5, 1, 2, 0]],
                             [[2, 4, 5, 1, 3], [1, 5, 2, 2, 4],
                              [2, 3, 4, 0, 5], [0, 1, 2, 3, 4]]])
    mask_rotated = data_rotated >= 0
    cube = NDCube(
        data_rotated,
        wcs_3d_ln_lt_t_rotated,
        mask=mask_rotated,
        uncertainty=data_rotated,
    )
    cube._extra_coords = simple_extra_coords_3d
    return cube
示例#3
0
def ndcube_3d_ln_lt_l_ec_time(wcs_3d_l_lt_ln, time_and_simple_extra_coords_2d):
    shape = (2, 3, 4)
    wcs_3d_l_lt_ln.array_shape = shape
    data = data_nd(shape)
    mask = data > 0
    cube = NDCube(
        data,
        wcs_3d_l_lt_ln,
        mask=mask,
        uncertainty=data,
    )
    cube._extra_coords = time_and_simple_extra_coords_2d
    cube._extra_coords._ndcube = cube
    return cube
示例#4
0
def ndcube_3d_ln_lt_l_ec_all_axes(wcs_3d_l_lt_ln, extra_coords_3d):
    shape = (2, 3, 4)
    wcs_3d_l_lt_ln.array_shape = shape
    data = data_nd(shape)
    mask = data > 0
    cube = NDCube(
        data,
        wcs_3d_l_lt_ln,
        mask=mask,
        uncertainty=data,
    )
    cube._extra_coords = extra_coords_3d
    cube._extra_coords._ndcube = cube
    return cube
示例#5
0
def gen_ndcube_3d_l_ln_lt_ectime(wcs_3d_lt_ln_l,
                                 time_axis,
                                 time_base,
                                 global_coords=None):
    shape = (10, 5, 8)
    wcs_3d_lt_ln_l.array_shape = shape
    data_cube = data_nd(shape)
    mask = data_cube < 0
    extra_coords = time_extra_coords(shape, time_axis, time_base)
    cube = NDCube(data_cube, wcs_3d_lt_ln_l, mask=mask, uncertainty=data_cube)
    cube._extra_coords = extra_coords

    if global_coords:
        cube._global_coords = global_coords

    return cube
示例#6
0
 def total_intensity(self):
     """
     The intensity summed over an entire spectral window.
     """
     data = np.sum(self.data, axis=0)
     wcs = self.wcs.dropaxis(2)
     return NDCube(data, wcs)
示例#7
0
def ndcube_4d_unit_uncertainty(wcs_4d_t_l_lt_ln):
    shape = (5, 8, 10, 12)
    data_cube = data_nd(shape)
    uncertainty = np.sqrt(data_cube)
    return NDCube(data_cube,
                  wcs=wcs_4d_t_l_lt_ln,
                  unit=u.J,
                  uncertainty=uncertainty)
示例#8
0
 def fromFile(cls, files: str) -> 'ViewerController':
     cubes = [NDCube(getdata(f), WCS(getheader(f))) for f in files]
     if len(cubes) == 1:
         cube = cubes[0]
     else:
         cube = NDCubeSequence(cubes)
     model = NDCubeModel(cube, files)
     return cls(model)
示例#9
0
def test_add_coord_after_create(time_lut):
    ndc = NDCube(np.random.random((10, 10)), wcs=WCS(naxis=2))
    assert isinstance(ndc.extra_coords, ExtraCoords)
    ndc.extra_coords.add("time", 0, time_lut)

    assert len(ndc.extra_coords._lookup_tables) == 1

    assert ndc.extra_coords["time"]._lookup_tables == ndc.extra_coords._lookup_tables
示例#10
0
def test_wcs_type_after_init(ndcube_3d_ln_lt_l, wcs_3d_l_lt_ln):
    # Generate a low level WCS
    slices = np.s_[:, :, 0]
    low_level_wcs = SlicedLowLevelWCS(wcs_3d_l_lt_ln, slices)
    # Generate an NDCube using the low level WCS
    cube = NDCube(ndcube_3d_ln_lt_l.data[slices], low_level_wcs)
    # Check the WCS has been converted to high level but NDCube init.
    assert isinstance(cube.wcs, BaseHighLevelWCS)
示例#11
0
def ndcube_4d_mask(wcs_4d_t_l_lt_ln):
    shape = (5, 8, 10, 12)
    data_cube = data_nd(shape)
    uncertainty = np.sqrt(data_cube)
    mask = data_cube % 2
    return NDCube(data_cube,
                  wcs=wcs_4d_t_l_lt_ln,
                  uncertainty=uncertainty,
                  mask=mask)
示例#12
0
def test_initialize_from_ndcube(ndcube_3d_l_ln_lt_ectime):
    cube = ndcube_3d_l_ln_lt_ectime
    cube.global_coords.add('distance', 'pos.distance', 1 * u.m)
    cube2 = NDCube(cube)

    assert cube.global_coords is cube2.global_coords
    assert cube.extra_coords is cube2.extra_coords

    cube3 = NDCube(cube, copy=True)
    ec = cube.extra_coords
    ec3 = cube3.extra_coords

    assert cube.global_coords == cube3.global_coords
    assert cube.global_coords is not cube3.global_coords
    assert ec.keys() == ec3.keys()
    assert ec.mapping == ec3.mapping
    assert np.allclose(ec.wcs.pixel_to_world_values(1), ec3.wcs.pixel_to_world_values(1))
    assert ec is not ec3
示例#13
0
def ndcube_3d_ln_lt_l(wcs_3d_l_lt_ln, simple_extra_coords_3d):
    shape = (2, 3, 4)
    wcs_3d_l_lt_ln.array_shape = shape
    data = data_nd(shape)
    mask = data > 0
    return NDCube(data,
                  wcs_3d_l_lt_ln,
                  mask=mask,
                  uncertainty=data,
                  extra_coords=simple_extra_coords_3d)
示例#14
0
def test_collection_update_collecton_input():
    orig_collection = NDCollection([("cube0", cube0), ("cube1", cube1)],
                                   aligned_axes[:2])
    cube1_alt = NDCube(data1 * 2, input_wcs1)
    new_collection = NDCollection([("cube1", cube1_alt), ("cube2", cube2)],
                                  aligned_axes[1:])
    orig_collection.update(new_collection)
    expected = NDCollection([("cube0", cube0), ("cube1", cube1_alt),
                             ("cube2", cube2)], aligned_axes)
    helpers.assert_collections_equal(orig_collection, expected)
示例#15
0
def test_combined_wcs(time_lut):
    ndc = NDCube(np.random.random((10, 10)), wcs=WCS(naxis=2))
    assert isinstance(ndc.extra_coords, ExtraCoords)
    ndc.extra_coords.add_coordinate("time", 0, time_lut)

    cwcs = ndc.combined_wcs
    assert cwcs.world_n_dim == 3
    assert cwcs.pixel_n_dim == 2
    world = cwcs.pixel_to_world(0, 0)
    assert u.allclose(world[:2], (1, 1) * u.one)
    assert world[2] == Time("2011-01-01T00:00:00")
示例#16
0
def _convert_iris_sequence(sequence, new_unit):
    """Converts data and uncertainty in an IRISSpectrogramSequence between units.

    Parameters
    ----------
    sequence: `NDCubeSequence`, `SpectrogramSequence` or `IRISSpectrogramSequence`
        Sequence whose constituent NDCubes are be converted to new units.

    new_unit: `astropy.units.Unit` or `str`
       Unit to which the data is to be converted.

    Returns
    -------
    converted_data_list: `list` of `NDCube`s.
       List of NDCubes with data and uncertainty attributes converted to new_unit.

    """
    # Define empty list to hold NDCubes with converted data and uncertainty.
    converted_data_list = []
    # Cycle through each NDCube, convert data and uncertainty to new
    # units, and append to list.
    for i, cube in enumerate(sequence.data):
        # Determine what type of DN unit is needed based on detector type.
        detector_type = _get_detector_type(cube.meta)
        if new_unit == "DN":
            new_unit = DN_UNIT[detector_type]
        # If NDCube is already in new unit, add NDCube as is to list.
        if cube.unit is new_unit or cube.unit is new_unit / u.s:
            converted_data_list.append(cube)
        # Else convert data and uncertainty to new unit.
        if cube.unit != new_unit or cube.unit != new_unit / u.s:
            # During calculations, the time component due to exposure
            # time correction, if it has been applied, is ignored.
            # Check here whether the time correction is present in the
            # original unit so that is carried through to new unit.
            if u.s not in (cube.unit.decompose() * u.s).bases:
                new_unit_time_accounted = new_unit / u.s
            else:
                new_unit_time_accounted = new_unit
            # Convert data and uncertainty to new unit.
            data = (cube.data * cube.unit).to(new_unit).value
            uncertainty = (cube.uncertainty.array *
                           cube.unit).to(new_unit).value
            # Append new instance of NDCube in new unit to list.
            converted_data_list.append(
                NDCube(data,
                       wcs=cube.wcs,
                       meta=cube.meta,
                       mask=cube.mask,
                       unit=new_unit_time_accounted,
                       uncertainty=uncertainty,
                       extra_coords=_extra_coords_to_input_format(
                           cube._extra_coords)))
    return converted_data_list
示例#17
0
def _apply_or_undo_exposure_time_correction(sequence, correction_function):
    """Applies or undoes exposure time correction to a sequence of NDCubes.

    Correction is applied (or undone) to both data and uncertainty attributes of NDCubes.

    Parameters
    ----------
    sequence: `NDCubeSequence`, `SpectrogramSequence` or `IRISSpectrogramSequence`
        Sequence whose constituent NDCubes are be converted to new units.
        NDCubes with sequence must have an 'exposure time' entry in its extra
        coords attribute.

    correction_function: function
        Function applying or undoing exposure time correction.

    Returns
    -------
    converted_data_list: `list` of `NDCube`s.
       List of NDCubes with data and uncertainty corrected (or uncorrected)
       for exposure time.

    """
    converted_data_list = []
    for i, cube in enumerate(sequence.data):
        if u.s not in cube.unit.decompose().bases:
            exposure_time_s = cube._extra_coords["exposure time"]["value"].to(
                u.s).value
            if len(cube.dimensions.shape) == 1:
                pass
            elif len(cube.dimensions.shape) == 2:
                exposure_time_s = exposure_time_s[:, np.newaxis]
            elif len(cube.dimensions.shape) == 3:
                exposure_time_s = exposure_time_s[:, np.newaxis, np.newaxis]
            else:
                raise ValueError(
                    "NDCube dimensions must be 2 or 3. Dimensions={0}".format(
                        len(cube.dimensions.shape)))
            data = correction_function(cube.data, exposure_time_s)
            uncertainty = correction_function(cube.uncertainty.array,
                                              exposure_time_s)
            converted_data_list.append(
                NDCube(data,
                       wcs=cube.wcs,
                       meta=cube.meta,
                       mask=cube.mask,
                       unit=cube.unit / u.s,
                       uncertainty=uncertainty,
                       extra_coords=_extra_coords_to_input_format(
                           cube._extra_coords)))
        else:
            converted_data_list.append(cube)
    return converted_data_list
示例#18
0
def test_dropped_dimension_reordering():
    data = np.ones((3, 4, 5))
    wcs_input_dict = {
        'CTYPE1': 'WAVE    ', 'CUNIT1': 'Angstrom', 'CDELT1': 0.2, 'CRPIX1': 0, 'CRVAL1': 10, 'NAXIS1': 5,
        'CTYPE2': 'HPLT-TAN', 'CUNIT2': 'deg', 'CDELT2': 0.5, 'CRPIX2': 2, 'CRVAL2': 0.5, 'NAXIS2': 4,
        'CTYPE3': 'HPLN-TAN', 'CUNIT3': 'deg', 'CDELT3': 0.4, 'CRPIX3': 2, 'CRVAL3': 1, 'NAXIS3': 3}
    input_wcs = WCS(wcs_input_dict)

    base_time = Time('2000-01-01', format='fits', scale='utc')
    timestamps = Time([base_time + TimeDelta(60 * i, format='sec') for i in range(data.shape[0])])

    my_cube = NDCube(data, input_wcs)
    my_cube.extra_coords.add('time', (0,), timestamps)

    # If the argument to extra_coords.add is array index then it should end up
    # in the first element of array_axis_physical_types
    assert "time" in my_cube.array_axis_physical_types[0]

    # When we slice out the dimension with the extra coord in it should go away.
    assert "time" not in my_cube[0].array_axis_physical_types[0]
示例#19
0
def ndcube_4d_ln_lt_l_t(wcs_4d_t_l_lt_ln):
    shape = (5, 8, 10, 12)
    wcs_4d_t_l_lt_ln.array_shape = shape
    data_cube = data_nd(shape)
    return NDCube(data_cube, wcs=wcs_4d_t_l_lt_ln)
示例#20
0
}
wm = WCS(header=hm, naxis=3)

data = np.array([[[1, 2, 3, 4], [2, 4, 5, 3], [0, -1, 2, 3]],
                 [[2, 4, 5, 1], [10, 5, 2, 2], [10, 3, 3, 0]]])
uncertainty = np.sqrt(data)
mask_cube = data < 0

cube = NDCube(data,
              wt,
              mask=mask_cube,
              uncertainty=uncertainty,
              missing_axis=[False, False, False, True],
              extra_coords=[
                  ('time', 0, u.Quantity(range(data.shape[0]), unit=u.s)),
                  ('hello', 1, u.Quantity(range(data.shape[1]), unit=u.W)),
                  ('bye', 2, u.Quantity(range(data.shape[2]), unit=u.m)),
                  ('another time', 2,
                   np.array([
                       datetime.datetime(2000, 1, 1) +
                       datetime.timedelta(minutes=i)
                       for i in range(data.shape[2])
                   ])), ('array coord', 2, np.arange(100, 100 + data.shape[2]))
              ])

cube_unit = NDCube(
    data,
    wt,
    mask=mask_cube,
    unit=u.J,
    uncertainty=uncertainty,
    missing_axis=[False, False, False, True],
示例#21
0
    'CUNIT1': 'deg',
    'CDELT1': 0.5,
    'CRPIX1': 2,
    'CRVAL1': 0.5,
    'NAXIS1': 4,
    'CTYPE2': 'HPLN-TAN',
    'CUNIT2': 'deg',
    'CDELT2': 0.4,
    'CRPIX2': 2,
    'CRVAL2': 1,
    'NAXIS2': 3
}
input_wcs1 = astropy.wcs.WCS(wcs_input_dict1)

# Define cubes.
cube0 = NDCube(data0, input_wcs)
cube1 = NDCube(data1, input_wcs1)
cube2 = NDCube(data2, input_wcs)

# Define sequences.
sequence02 = NDCubeSequence([cube0, cube2])
sequence20 = NDCubeSequence([cube2, cube0])

# Define collections
aligned_axes = ((1, 2), (2, 0), (1, 2))
keys = ("cube0", "cube1", "cube2")
cube_collection = NDCollection([("cube0", cube0), ("cube1", cube1),
                                ("cube2", cube2)], aligned_axes)
seq_collection = NDCollection([("seq0", sequence02), ("seq1", sequence20)],
                              aligned_axes="all")
示例#22
0
    'NAXIS2': 3,
    'CTYPE3': 'HPLN-TAN',
    'CUNIT3': 'deg',
    'CDELT3': 0.4,
    'CRPIX3': 2,
    'CRVAL3': 1,
    'NAXIS3': 2,
}

wt = WCS(header=ht, naxis=3)
wm = WCS(header=hm, naxis=3)

cube1 = NDCube(data,
               wt,
               missing_axes=[False, False, False, True],
               extra_coords=[
                   ('pix', 0, u.Quantity(range(data.shape[0]), unit=u.pix)),
                   ('distance', None, u.Quantity(0, unit=u.cm)),
                   ('time', None, datetime.datetime(2000, 1, 1, 0, 0))
               ])

cube2 = NDCube(data,
               wm,
               extra_coords=[
                   ('pix', 0,
                    u.Quantity(np.arange(1, data.shape[0] + 1), unit=u.pix) +
                    cube1.extra_coords['pix']['value'][-1]),
                   ('distance', None, u.Quantity(1, unit=u.cm)),
                   ('time', None, datetime.datetime(2000, 1, 1, 0, 1))
               ])

cube3 = NDCube(data2,
    'CRVAL2': 0.5,
    'NAXIS2': 3,
    'CTYPE3': 'HPLN-TAN',
    'CUNIT3': 'deg',
    'CDELT3': 0.4,
    'CRPIX3': 2,
    'CRVAL3': 1,
    'NAXIS3': 2
}
wm = WCS(header=hm, naxis=3)

cube1 = NDCube(data,
               wt,
               missing_axes=[False, False, False, True],
               extra_coords=[
                   ('pix', 0, u.Quantity(range(data.shape[0]), unit=u.pix)),
                   ('hi', 1, u.Quantity(range(data.shape[1]), unit=u.s)),
                   ('distance', None, u.Quantity(0, unit=u.cm)),
                   ('time', None, datetime.datetime(2000, 1, 1, 0, 0))
               ])

cube1_with_unit = NDCube(
    data,
    wt,
    missing_axes=[False, False, False, True],
    unit=u.km,
    extra_coords=[('pix', 0, u.Quantity(range(data.shape[0]), unit=u.pix)),
                  ('hi', 1, u.Quantity(range(data.shape[1]), unit=u.s)),
                  ('distance', None, u.Quantity(0, unit=u.cm)),
                  ('time', None, datetime.datetime(2000, 1, 1, 0, 0))])
示例#24
0
def ndcube_1d_l(wcs_1d_l):
    shape = (10, )
    data_cube = data_nd(shape)
    return NDCube(data_cube, wcs=wcs_1d_l)
示例#25
0
def ndcube_2d_ln_lt(wcs_2d_lt_ln):
    shape = (10, 12)
    data_cube = data_nd(shape)
    return NDCube(data_cube, wcs=wcs_2d_lt_ln)
示例#26
0
def stack_spectrogram_sequence(cube_sequence, memmap=True, reproject=False):
    """
    Given a sequence of IRIS rasters stack them into a single `ndcube.NDCube`.

    .. warning::

        This is intended to be used for plotting only, it will not preserve the
        flux in the image.

    Parameters
    ----------
    cube_sequence : `irispy.spectrogram.IRISSpectrogramCubeSequence`
        The input arrays to regrid.

    memmap : `bool`
        Use a temporary file to store the re-gridded data in rather than in memory.

    Returns
    -------
    `ndcube.NDCube`: A 4D cube with a new time dimension

    """
    if len(cube_sequence.data) == 1:
        raise ValueError("No point doing this to one raster")

    if memmap:
        if not isinstance(memmap, Path):
            memmap = tempfile.TemporaryFile()

    target_wcs = cube_sequence[0].wcs
    target_shape = cube_sequence[0].data.shape

    cube_shape = tuple([len(cube_sequence.data)] + list(target_shape))
    memmap = np.memmap(
        memmap, cube_sequence[0].data.dtype, "w+",
        shape=cube_shape) if memmap else np.empty(cube_shape)

    times = [cube_sequence[0].extra_coords['time']['value'][0]]
    memmap[0] = cube_sequence[0].data
    for i, cube in enumerate(cube_sequence.data[1:]):
        if not reproject:
            memmap[i + 1] = cube_sequence[i + 1].data
        else:
            reproject_interp((cube.data, cube.wcs),
                             target_wcs,
                             shape_out=target_shape,
                             independent_celestial_slices=False,
                             order=0,
                             return_footprint=False,
                             output_array=memmap[i + 1])
        times.append(cube.extra_coords['time']['value'][0])

    times = Time(times)
    dts = times[1:] - times[:-1]

    if u.allclose(dts[0].to(u.s), dts.to(u.s), atol=0.5 * u.s):
        dt = dts[0]
    else:
        raise ValueError("Can't handle tabular wcs")

    out_wcs = WCS(naxis=4)
    out_wcs.wcs.crpix = list(target_wcs.wcs.crpix) + [0]
    out_wcs.wcs.crval = list(target_wcs.wcs.crval) + [0]
    out_wcs.wcs.cdelt = list(target_wcs.wcs.cdelt) + [dt.to(u.s).value]
    out_wcs.wcs.ctype = list(target_wcs.wcs.ctype) + ['TIME']
    out_wcs.wcs.cunit = list(target_wcs.wcs.cunit) + ['s']

    pc = np.identity(4)
    pc[:3, :3] = target_wcs.wcs.pc

    out_wcs.wcs.pc = pc

    return NDCube(memmap, out_wcs)
示例#27
0
mask_cubem = data > 0
mask_cube = data >= 0
uncertaintym = data
uncertainty = np.sqrt(data)

mask_disordered = data_disordered > 0
uncertainty_disordered = data_disordered

mask_ordered = data_ordered > 0
uncertainty_ordered = data_ordered

cubem = NDCube(
    data,
    wm,
    mask=mask_cubem,
    uncertainty=uncertaintym,
    extra_coords=[('time', 0, u.Quantity(range(data.shape[0]), unit=u.pix)),
                  ('hello', 1, u.Quantity(range(data.shape[1]), unit=u.pix)),
                  ('bye', 2, u.Quantity(range(data.shape[2]), unit=u.pix))])

cube_disordered_inputs = (
    data_disordered, w_disordered, mask_disordered, uncertainty_disordered,
    [('spam', 0, u.Quantity(range(data_disordered.shape[0]), unit=u.pix)),
     ('hello', 1, u.Quantity(range(data_disordered.shape[1]), unit=u.pix)),
     ('bye', 2, u.Quantity(range(data_disordered.shape[2]), unit=u.pix))])
cube_disordered = NDCube(cube_disordered_inputs[0], cube_disordered_inputs[1],
                         mask=cube_disordered_inputs[2], uncertainty=cube_disordered_inputs[3],
                         extra_coords=cube_disordered_inputs[4])

cube_ordered = NDCubeOrdered(
    data_ordered,
示例#28
0
def ndcube_4d_extra_coords(wcs_4d_t_l_lt_ln, simple_extra_coords_3d):
    shape = (5, 8, 10, 12)
    data_cube = data_nd(shape)
    return NDCube(data_cube,
                  wcs=wcs_4d_t_l_lt_ln,
                  extra_coords=simple_extra_coords_3d)
示例#29
0
    'CDELT2': 0.5,
    'CRPIX2': 2,
    'CRVAL2': 0.5,
    'NAXIS2': 3,
    'CTYPE3': 'HPLN-TAN',
    'CUNIT3': 'deg',
    'CDELT3': 0.4,
    'CRPIX3': 2,
    'CRVAL3': 1,
    'NAXIS3': 2,
}

wt = WCS(header=ht, naxis=3)
wm = WCS(header=hm, naxis=3)

cube1 = NDCube(data, wt, missing_axis=[False, False, False, True])
cube2 = NDCube(data, wm)
cube3 = NDCube(data2, wt, missing_axis=[False, False, False, True])
cube4 = NDCube(data2, wm)

seq = NDCubeSequence([cube1, cube2, cube3, cube4], common_axis=0)
seq1 = NDCubeSequence([cube1, cube2, cube3, cube4])

map1 = cube2[:, :, 0].to_sunpy()
map2 = cube2[:, :, 1].to_sunpy()
map3 = cube2[:, :, 2].to_sunpy()
map4 = cube2[:, :, 3].to_sunpy()
mapcube_seq = NDCubeSequence([map1, map2, map3, map4], common_axis=0)


@pytest.mark.parametrize("test_input,expected", [
示例#30
0
def generate_ndcube(obs="example.fits.gz",
                    pf=None,
                    bp=None,
                    input_wcs=None,
                    zscale=1,
                    nz=30,
                    finite_energy=True,
                    xrange=None,
                    yrange=None):
    """
    Generate NDCubes from the potential field extrapolation generated by
    MONAMI
    Parameters
    ----------
    obs : `string`
        file name of the fits file of the observation, in the case of
        non-linear force free field extrapolation, this file must be the
        Br component of the observation
    pf : `string`
        file name of the field extrapolation result
    bp : `dictionary`
        output of function read_data(obs, pf)
    input_wcs : `astropy.wcs.WCS`
        output of funciton construct_wcs(bp)
    zscale: `int`
        Sets the z-scale (1 = same scale as the x,y axes before the
        heliographic transformation). Default= 1
    nz: `int`
        Number of equally spaced grid points in the z direction
    finite_energy: `bool`
        whether or not to constrain with finite energy
    xrange, yrange: `list`
        with 2 elements, defines the edges of the ROI where the potential field
        extrapolation will be performed
    Returns
    -------
    `tuple`
        with the first, second and third element as the NDCube for bxp, byp
        and bzp

    """
    # read data
    if bp is None:
        if pf is not None:
            bp = read_data(obs, pf)
        else:
            # read fits file and get the fits header
            hdul = fits.open(obs)
            header = hdul[0].header
            bz = hdul[0].data
            hdul.close()
            shape = np.shape(bz)

            # get xrange and yrange
            if xrange is None or yrange is None:
                xrange, yrange = get_roi(bz)
            # test if xrange and yrange is correct
            if np.shape(xrange) != (2, ):
                raise ValueError("xrange must be in form of [x0, x1]!")
            if np.shape(yrange) != (2, ):
                raise ValueError("yrange must be in form of [x0, x1]!")
            # convert xrange and yrange into integers
            xrange = np.rint(xrange).tolist()
            yrange = np.rint(yrange).tolist()
            xrange = list(map(int, xrange))
            yrange = list(map(int, yrange))
            # not beyond the boudnary
            if xrange[1] >= shape[1]:
                xrange[1] = shape[1] - 1
            if yrange[1] >= shape[0]:
                yrange[1] = shape[0] - 1
            if xrange[0] < 0:
                xrange[0] = 0
            if yrange[0] < 0:
                yrange[0] = 0

            # make pixel numbers even
            if (yrange[1] - yrange[0]) % 2 == 1:
                yrange[1] = yrange[1] - 1
            if (xrange[1] - xrange[0]) % 2 == 1:
                xrange[1] = xrange[1] - 1

            # call the potential field extrapolation code
            print('Start to perform the potential field extrapolation...')
            pfe = Magnetic_Field_Extrapolation(bz[yrange[0]:yrange[1],
                                                  xrange[0]:xrange[1]],
                                               nz=nz,
                                               zscale=zscale,
                                               finite_energy=finite_energy)

            # construct bp dictionary
            bp = {
                "bpx": pfe['Bx'],
                "bpy": pfe['By'],
                "bpz": pfe['Bz'],
                "zscale": zscale,
                "xrange": xrange,
                "yrange": yrange,
                "header": header
            }

    # construct wcs coordinate
    if input_wcs is None:
        input_wcs = construct_wcs(bp)

    # create NDCubes
    if 'bpx' in bp.keys():
        metax = {"Description": "Bx magnetic field from MONAMI/PF"}
        metay = {"Description": "By magnetic field from MONAMI/PF"}
        metaz = {"Description": "Bz magnetic field from MONAMI/PF"}
        bxtube = NDCube(bp['bpx'], input_wcs, meta=metax)
        bytube = NDCube(bp['bpy'], input_wcs, meta=metay)
        bztube = NDCube(bp['bpz'], input_wcs, meta=metaz)
    else:
        metax = {"Description": "Bx magnetic field from MONAMI/NLFFF"}
        metay = {"Description": "By magnetic field from MONAMI/NLFFF"}
        metaz = {"Description": "Bz magnetic field from MONAMI/NLFFF"}
        bxtube = NDCube(bp['bnx'], input_wcs, meta=metax)
        bytube = NDCube(bp['bny'], input_wcs, meta=metay)
        bztube = NDCube(bp['bnz'], input_wcs, meta=metaz)

    return (bxtube, bytube, bztube)