def __init__(self, encoder: Encoder, Y_last_dim: int, keep_prob: float, favoritism: tuple, depth0: int, depth1: int, either_sig_softmax: bool): """""" """ on transforme le layer d'avant en un volume 7*7*depth0 par des conv 1*1""" with tf.variable_scope("smallConv0"): W = ing.weight_variable([1, 1, 64, depth0], name="W") b = ing.bias_variable([depth0], name="b") conv = tf.nn.conv2d( encoder.Y, W, strides=[1, 1, 1, 1], padding="SAME") + b relu = tf.nn.relu(conv, name="relu") relu_dropout = tf.nn.dropout(relu, keep_prob=keep_prob, name="dropout") """ on transforme le layer d'avant en un volume 7*7*nbCategories par des conv 1*1""" with tf.variable_scope("smallConv1"): W = ing.weight_variable([1, 1, depth0, depth1], name="W") b = ing.bias_variable([depth1], name="b") conv = tf.nn.conv2d( relu_dropout, W, strides=[1, 1, 1, 1], padding="SAME") + b relu = tf.nn.relu(conv, name="relu") relu_dropout = tf.nn.dropout(relu, keep_prob=keep_prob, name="dropout") """ DANS LA SUITE : on dilate les images 7*7 pour revenir à la résolution initiale 28*28 """ """ 7*7*depth1 ---> 14*14*32 """ with tf.variable_scope("dilate0"): """ [height, width, output_channels, in_channels=nbCategories] """ W = tf.Variable(initial_value=ing.get_bilinear_initial_tensor( [4, 4, 32, depth1], 2), name='W') b = ing.bias_variable([32], name="b") upConv0 = ing.up_convolution(relu_dropout, W, 2, 2) + b """on y ajoute le milieu de leNet (14*14*32 aussi)""" fuse_1 = upConv0 + encoder.pool1 ing.summarizeW_asImage(W) """on dilate maintenant fuse_1 pour atteindre la résolution des images d'origine 14*14*32 ----> 28*28*nbCategories """ with tf.variable_scope("dilate1"): W = tf.Variable(initial_value=ing.get_bilinear_initial_tensor( [4, 4, Y_last_dim, 32], 2), name='W') b = ing.bias_variable([Y_last_dim], name="b") ing.summarizeW_asImage(W) """ les logits (on y applique pas le softmax car plus loin on peut éventuellement utiliser tf.nn.sparse_softmax_cross_entropy_with_logits) """ self.Y_logits = ing.up_convolution(fuse_1, W, 2, 2) + b if either_sig_softmax: self.Y_proba = tf.nn.sigmoid(self.Y_logits) else: self.Y_proba = tf.nn.softmax(self.Y_logits) self.Y_cat_sum = tf.reduce_sum(self.Y_proba, axis=3)
def __init__(self,X:tf.Tensor,nbChannels:int): self.nbChannels=nbChannels nbSummaryOutput=4 """""" ''' couche de convolution 1''' with tf.variable_scope("conv1"): W_conv1 = ing.weight_variable([5, 5, self.nbChannels, 32],name="W") b_conv1 = ing.bias_variable([32],name="b") self.filtred1=tf.nn.relu(ing.conv2d_basic(X,W_conv1,b_conv1)) """ shape=(?,14*14,nbChannels) """ self.pool1 =ing.max_pool_2x2(self.filtred1) ing.summarizeW_asImage(W_conv1) tf.summary.image("filtred", self.filtred1[:, :, :, 0:1], max_outputs=nbSummaryOutput) ''' couche de convolution 2''' with tf.variable_scope("conv2"): W_conv2 = ing.weight_variable([5, 5, 32, 64],name="W") b_conv2 = ing.bias_variable([64],name="b") self.filtred2=tf.nn.relu(ing.conv2d_basic(self.pool1, W_conv2, b_conv2)) """ shape=(?,7*7,nbChannels) """ self.pool2 =ing.max_pool_2x2(self.filtred2) ing.summarizeW_asImage(W_conv2) tf.summary.image("filtred",self.filtred2[:,:,:,0:1],max_outputs=12) """un alias pour la sortie""" self.Y=self.pool2
def __init__(self, X, nbChannels: int, nbCategories: int, keep_prob, favoritism): """""" """on récupère le réseau très simple: leNet_bottom""" leNet = bricks.LeNet_bottom(X, nbChannels) """la sorties est un volume 7*7*64. """ """ DANS LA SUITE: on recopie leNet, mais en remplaçant les fully-connected par des convolutions 1*1 """ """ on transforme le layer d'avant en un volume 7*7*1024 par des conv 1*1""" with tf.variable_scope("smallConv0"): W = ing.weight_variable([1, 1, 64, 1024], name="W") b = ing.bias_variable([1024], name="b") conv = tf.nn.conv2d( leNet.Y, W, strides=[1, 1, 1, 1], padding="SAME") + b relu = tf.nn.relu(conv, name="relu") relu_dropout = tf.nn.dropout(relu, keep_prob=keep_prob, name="dropout") """ on transforme le layer d'avant en un volume 7*7*nbCategories par des conv 1*1""" with tf.variable_scope("smallConv1"): W = ing.weight_variable([1, 1, 1024, nbCategories], name="W") b = ing.bias_variable([nbCategories], name="b") conv = tf.nn.conv2d( relu_dropout, W, strides=[1, 1, 1, 1], padding="SAME") + b relu = tf.nn.relu(conv, name="relu") relu_dropout = tf.nn.dropout(relu, keep_prob=keep_prob, name="dropout") """ DANS LA SUITE : on dilate les images 7*7 pour revenir à la résolution initiale 28*28 """ """ 7*7*nbCategories ---> 14*14*32 """ with tf.variable_scope("dilate0"): """ [height, width, output_channels, in_channels=nbCategories] """ W = tf.Variable(initial_value=ing.get_bilinear_initial_tensor( [4, 4, 32, nbCategories], 2), name='W') b = ing.bias_variable([32], name="b") upConv0 = ing.up_convolution(relu_dropout, W, 2, 2) + b """on y ajoute le milieu de leNet (14*14*32 aussi)""" fuse_1 = upConv0 + leNet.pool1 ing.summarizeW_asImage(W) """on dilate maintenant fuse_1 pour atteindre la résolution des images d'origine 14*14*32 ----> 28*28*nbCategories """ with tf.variable_scope("dilate1"): W = tf.Variable(initial_value=ing.get_bilinear_initial_tensor( [4, 4, nbCategories, 32], 2), name='W') b = ing.bias_variable([nbCategories], name="b") ing.summarizeW_asImage(W) """ les logits (on y applique pas le softmax car plus loin on utilisera la loss tf.nn.sparse_softmax_cross_entropy_with_logits) """ self.Y_logits = ing.up_convolution(fuse_1, W, 2, 2) + b self.Y_proba = tf.nn.softmax(self.Y_logits) """ chaque pixel reçoit la catégorie qui a la plus forte probabilité, en tenant compte du favoritisme.""" self.Y_cat = tf.cast( tf.argmax(self.Y_proba * favoritism, dimension=3, name="prediction"), tf.int32)
def __init__(self, h_img: int, w_img: int, nbChannels: int, nbCategories, favoritism, depth0, depth1): self.nbConsecutiveOptForOneFit = 1 self.summaryEither_cat_proba = 0 (self.batch_size, self.h_img, self.w_img, self.nbChannels) = (None, h_img, w_img, nbChannels) self.nbCategories = nbCategories """ PLACEHOLDER """ self._X = tf.placeholder(name="X", dtype=tf.float32, shape=(None, h_img, w_img, nbChannels)) """les annotations : une image d'entier, chaque entier correspond à une catégorie""" self._Y_proba = tf.placeholder( dtype=tf.float32, shape=[None, h_img, w_img, nbCategories], name="Y") self._itr = tf.placeholder(name="itr", dtype=tf.float32) self.keep_proba = tf.get_variable("keep_proba", initializer=1., trainable=False) self.learning_rate = tf.get_variable("learning_rate", initializer=1e-2, trainable=False) self.hat = Hat_fullyConv(self._X, nbChannels, nbCategories, self.keep_proba, favoritism, depth0, depth1) """ les loss qu'on suivra sur le long terme. Le *10 c'est juste pour mieux interpréter """ self._loss_instances = -10 * matching_IoU_batch( self._Y_proba[:, :, :, 1:], self.hat.Y_proba[:, :, :, 1:]) self._loss_background = -10 * just_IoU_batch( self._Y_proba[:, :, :, 0], self.hat.Y_proba[:, :, :, 0]) self._penalty = 10 * sobel_penalty(self.hat.Y_proba, self.nbCategories) """ si le coef devant la _loss_background est trop grand, la loss_instance reste bloquée à 0. mais s'il est trop petit le background se transforme en damier !""" self._loss = self._loss_instances + tf.nn.sigmoid( self._itr - 5) * self._loss_background + 5. * self._penalty tf.summary.scalar("loss", self._loss) tf.summary.scalar("loss instances", self._loss_instances) tf.summary.scalar("loss background", self._loss_background) tf.summary.scalar("penalty", self._penalty) """ optimizer, monitoring des gradients """ adam_opt = tf.train.AdamOptimizer(self.learning_rate) _grads_vars = adam_opt.compute_gradients(self._loss) for index, grad in enumerate(_grads_vars): tf.summary.histogram("{}-grad".format(_grads_vars[index][0].name), _grads_vars[index][0]) tf.summary.histogram("{}-var".format(_grads_vars[index][1].name), _grads_vars[index][1]) if len(_grads_vars[index][0].get_shape().as_list()) == 4: ing.summarizeW_asImage(_grads_vars[index][0]) self._summary = tf.summary.merge_all() """ la minimisation est faite via cette op: """ self.step_op = adam_opt.apply_gradients(_grads_vars) self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) self.verbose = True max_outputs = 4 tf.summary.image("input_image", self._X, max_outputs=max_outputs) if self.summaryEither_cat_proba == 0: output = tf.expand_dims(tf.cast(self.hat.Y_cat, dtype=tf.float32), 3) output_color = ing.colorize( output, vmin=0.0, vmax=self.nbCategories, cmap='plasma') #'viridis', 'plasma', 'inferno', 'magma' tf.summary.image("Y_hat", output_color) else: for cat in range(0, self.nbCategories): tf.summary.image("hat_proba cat" + str(cat), tf.expand_dims(self.hat.Y_proba[:, :, :, cat], 3), max_outputs=max_outputs) self._summary = tf.summary.merge_all()