def getNNIndicesForBigFeatureMats(test_org,mats): test=ca.array(test_org); distances=[] for idx_mat,mat_curr in enumerate(mats): print idx_mat distances.append(nearest_neighbor.getSimpleDot(test,ca.array(mats[idx_mat]),gpuFlag=True)); # print ''; distances=np.hstack(tuple(distances)); indices=np.argsort(distances,axis=1)[:,::-1].astype(np.uint32) return indices
def getNNIndicesForBigFeatureMats(test_org, mats): test = ca.array(test_org) distances = [] for idx_mat, mat_curr in enumerate(mats): print idx_mat distances.append( nearest_neighbor.getSimpleDot(test, ca.array(mats[idx_mat]), gpuFlag=True)) # print ''; distances = np.hstack(tuple(distances)) indices = np.argsort(distances, axis=1)[:, ::-1].astype(np.uint32) return indices
def saveDotProduct((first_shot_path, second_shot_path, out_file, idx)): test = getGPUArray(first_shot_path) train = getGPUArray(second_shot_path) results = nearest_neighbor.getSimpleDot(test, train, gpuFlag=True) np.savez(out_file, results) return True
def saveDotProduct((first_shot_path,second_shot_path,out_file,idx)): test = getGPUArray(first_shot_path); train = getGPUArray(second_shot_path); results = nearest_neighbor.getSimpleDot(test,train,gpuFlag=True) np.savez(out_file,results); return True