示例#1
0
def init_state(history_size, window_sizes, number_of_states):
    """ Initialize the state dictionary of the MHOD algorithm.

    :param history_size: The number of last system states to store.
     :type history_size: int,>0

    :param window_sizes: The required window sizes.
     :type window_sizes: list(int)

    :param number_of_states: The number of states.
     :type number_of_states: int,>0

    :return: The initialization state dictionary.
     :rtype: dict(str: *)
    """
    return {
        "previous_state": 0,
        "previous_utilization": [],
        "time_in_states": 0,
        "time_in_state_n": 0,
        "request_windows": estimation.init_request_windows(number_of_states, max(window_sizes)),
        "estimate_windows": estimation.init_deque_structure(window_sizes, number_of_states),
        "variances": estimation.init_variances(window_sizes, number_of_states),
        "acceptable_variances": estimation.init_variances(window_sizes, number_of_states),
    }
示例#2
0
def init_state(history_size, window_sizes, number_of_states):
    """ Initialize the state dictionary of the MHOD algorithm.

    :param history_size: The number of last system states to store.
     :type history_size: int,>0

    :param window_sizes: The required window sizes.
     :type window_sizes: list(int)

    :param number_of_states: The number of states.
     :type number_of_states: int,>0

    :return: The initialization state dictionary.
     :rtype: dict(str: *)
    """
    return {
        'previous_state': 0,
        'previous_utilization': [],
        'time_in_states': 0,
        'time_in_state_n': 0,
        'request_windows': estimation.init_request_windows(
            number_of_states, max(window_sizes)),
        'estimate_windows': estimation.init_deque_structure(
            window_sizes, number_of_states),
        'variances': estimation.init_variances(
            window_sizes, number_of_states),
        'acceptable_variances': estimation.init_variances(
            window_sizes, number_of_states)}
 def test_init_variances(self):
     self.assertEqual(m.init_variances([2, 4], 1), [[{2: 1.0,
                                                      4: 1.0}]])
     self.assertEqual(m.init_variances([2, 4], 2), [[{2: 1.0,
                                                      4: 1.0},
                                                     {2: 1.0,
                                                      4: 1.0}],
                                                    [{2: 1.0,
                                                      4: 1.0},
                                                     {2: 1.0,
                                                      4: 1.0}]])
     self.assertEqual(m.init_variances([2, 4], 3), [[{2: 1.0,
                                                      4: 1.0},
                                                     {2: 1.0,
                                                      4: 1.0},
                                                     {2: 1.0,
                                                      4: 1.0}],
                                                    [{2: 1.0,
                                                      4: 1.0},
                                                     {2: 1.0,
                                                      4: 1.0},
                                                     {2: 1.0,
                                                      4: 1.0}],
                                                    [{2: 1.0,
                                                      4: 1.0},
                                                     {2: 1.0,
                                                      4: 1.0},
                                                     {2: 1.0,
                                                      4: 1.0}]])
示例#4
0
def mhod(
    state_config, otf, window_sizes, bruteforce_step, learning_steps, time_step, migration_time, utilization, state
):
    """ The MHOD algorithm returning whether the host is overloaded.

    :param state_config: The state configuration.
     :type state_config: list(float)

    :param otf: The OTF parameter.
     :type otf: float,>0

    :param window_sizes: A list of window sizes.
     :type window_sizes: list(int)

    :param bruteforce_step: The step of the bruteforce algorithm.
     :type bruteforce_step: float

    :param time_step: The length of the simulation time step in seconds.
     :type time_step: int,>=0

    :param migration_time: The VM migration time in time seconds.
     :type migration_time: float,>=0

    :param utilization: The history of the host's CPU utilization.
     :type utilization: list(float)

    :param state: The state of the algorithm.
     :type state: dict

    :return: The updated state and decision of the algorithm.
     :rtype: tuple(bool, dict)
    """
    utilization_length = len(utilization)
    #    if utilization_length == state['time_in_states'] and \
    #      utilization == state['previous_utilization']:
    #        # No new utilization values
    #        return False, state

    number_of_states = len(state_config) + 1
    previous_state = 0
    #    state['previous_utilization'] = utilization
    state["request_windows"] = estimation.init_request_windows(number_of_states, max(window_sizes))
    state["estimate_windows"] = estimation.init_deque_structure(window_sizes, number_of_states)
    state["variances"] = estimation.init_variances(window_sizes, number_of_states)
    state["acceptable_variances"] = estimation.init_variances(window_sizes, number_of_states)

    for i, current_state in enumerate(utilization_to_states(state_config, utilization)):
        state["request_windows"] = estimation.update_request_windows(
            state["request_windows"], previous_state, current_state
        )
        state["estimate_windows"] = estimation.update_estimate_windows(
            state["estimate_windows"], state["request_windows"], previous_state
        )
        state["variances"] = estimation.update_variances(state["variances"], state["estimate_windows"], previous_state)
        state["acceptable_variances"] = estimation.update_acceptable_variances(
            state["acceptable_variances"], state["estimate_windows"], previous_state
        )
        previous_state = current_state

    selected_windows = estimation.select_window(state["variances"], state["acceptable_variances"], window_sizes)
    p = estimation.select_best_estimates(state["estimate_windows"], selected_windows)
    # These two are saved for testing purposes
    state["selected_windows"] = selected_windows
    state["p"] = p

    state_vector = build_state_vector(state_config, utilization)
    current_state = get_current_state(state_vector)
    state["previous_state"] = current_state

    state_n = len(state_config)
    #    if utilization_length > state['time_in_states'] + 1:
    #        for s in utilization_to_states(
    #                state_config,
    #                utilization[-(utilization_length - state['time_in_states']):]):
    #            state['time_in_states'] += 1
    #            if s == state_n:
    #                state['time_in_state_n'] += 1
    #    else:
    state["time_in_states"] += 1
    if current_state == state_n:
        state["time_in_state_n"] += 1

    if log.isEnabledFor(logging.DEBUG):
        log.debug("MHOD utilization:" + str(utilization))
        log.debug("MHOD time_in_states:" + str(state["time_in_states"]))
        log.debug("MHOD time_in_state_n:" + str(state["time_in_state_n"]))
        log.debug("MHOD p:" + str(p))
        log.debug("MHOD current_state:" + str(current_state))
        log.debug("MHOD p[current_state]:" + str(p[current_state]))

    if utilization_length >= learning_steps:
        if current_state == state_n and p[state_n][state_n] > 0:
            # if p[current_state][state_n] > 0:
            policy = bruteforce.optimize(
                bruteforce_step,
                1.0,
                otf,
                (migration_time / time_step),
                ls,
                p,
                state_vector,
                state["time_in_states"],
                state["time_in_state_n"],
            )
            # This is saved for testing purposes
            state["policy"] = policy
            if log.isEnabledFor(logging.DEBUG):
                log.debug("MHOD policy:" + str(policy))
            command = issue_command_deterministic(policy)
            if log.isEnabledFor(logging.DEBUG):
                log.debug("MHOD command:" + str(command))
            return command, state
    return False, state
示例#5
0
def mhod(state_config, otf, window_sizes, bruteforce_step, learning_steps,
         time_step, migration_time, utilization, state):
    """ The MHOD algorithm returning whether the host is overloaded.

    :param state_config: The state configuration.
     :type state_config: list(float)

    :param otf: The OTF parameter.
     :type otf: float,>0

    :param window_sizes: A list of window sizes.
     :type window_sizes: list(int)

    :param bruteforce_step: The step of the bruteforce algorithm.
     :type bruteforce_step: float

    :param time_step: The length of the simulation time step in seconds.
     :type time_step: int,>=0

    :param migration_time: The VM migration time in time seconds.
     :type migration_time: float,>=0

    :param utilization: The history of the host's CPU utilization.
     :type utilization: list(float)

    :param state: The state of the algorithm.
     :type state: dict

    :return: The updated state and decision of the algorithm.
     :rtype: tuple(bool, dict)
    """
    utilization_length = len(utilization)
#    if utilization_length == state['time_in_states'] and \
#      utilization == state['previous_utilization']:
#        # No new utilization values
#        return False, state

    number_of_states = len(state_config) + 1
    previous_state = 0
#    state['previous_utilization'] = utilization
    state['request_windows'] = estimation.init_request_windows(
        number_of_states, max(window_sizes))
    state['estimate_windows'] = estimation.init_deque_structure(
        window_sizes, number_of_states)
    state['variances'] = estimation.init_variances(
        window_sizes, number_of_states)
    state['acceptable_variances'] = estimation.init_variances(
        window_sizes, number_of_states)

    for i, current_state in enumerate(utilization_to_states(state_config, utilization)):
        state['request_windows'] = estimation.update_request_windows(
            state['request_windows'],
            previous_state,
            current_state)
        state['estimate_windows'] = estimation.update_estimate_windows(
            state['estimate_windows'],
            state['request_windows'],
            previous_state)
        state['variances'] = estimation.update_variances(
            state['variances'],
            state['estimate_windows'],
            previous_state)
        state['acceptable_variances'] = estimation.update_acceptable_variances(
            state['acceptable_variances'],
            state['estimate_windows'],
            previous_state)
        previous_state = current_state

    selected_windows = estimation.select_window(
        state['variances'],
        state['acceptable_variances'],
        window_sizes)
    p = estimation.select_best_estimates(
        state['estimate_windows'],
        selected_windows)
    # These two are saved for testing purposes
    state['selected_windows'] = selected_windows
    state['p'] = p

    state_vector = build_state_vector(state_config, utilization)
    current_state = get_current_state(state_vector)
    state['previous_state'] = current_state

    state_n = len(state_config)
#    if utilization_length > state['time_in_states'] + 1:
#        for s in utilization_to_states(
#                state_config,
#                utilization[-(utilization_length - state['time_in_states']):]):
#            state['time_in_states'] += 1
#            if s == state_n:
#                state['time_in_state_n'] += 1
#    else:
    state['time_in_states'] += 1
    if current_state == state_n:
        state['time_in_state_n'] += 1

    if log.isEnabledFor(logging.DEBUG):
        log.debug('MHOD utilization:' + str(utilization))
        log.debug('MHOD time_in_states:' + str(state['time_in_states']))
        log.debug('MHOD time_in_state_n:' + str(state['time_in_state_n']))
        log.debug('MHOD p:' + str(p))
        log.debug('MHOD current_state:' + str(current_state))
        log.debug('MHOD p[current_state]:' + str(p[current_state]))

    if utilization_length >= learning_steps:
        if current_state == state_n and p[state_n][state_n] > 0:
        # if p[current_state][state_n] > 0:
            policy = bruteforce.optimize(
                bruteforce_step, 1.0, otf, (migration_time / time_step), ls, p,
                state_vector, state['time_in_states'], state['time_in_state_n'])
            # This is saved for testing purposes
            state['policy'] = policy
            if log.isEnabledFor(logging.DEBUG):
                log.debug('MHOD policy:' + str(policy))
            command = issue_command_deterministic(policy)
            if log.isEnabledFor(logging.DEBUG):
                log.debug('MHOD command:' + str(command))
            return command, state
    return False, state