def compare_state_outcomes(genome, sensor_input_file): # This function evaluates the difference of the states by running it on a randomly generated set # input values and reporting the distance between the output vectors of the states. # Load the randomly generated sensor inputs with open(sensor_input_file, 'r') as csv_file: csv_reader = csv.reader(csv_file, quoting=csv.QUOTE_NONNUMERIC) sensor_vectors = [row for row in csv_reader] # Evaluate the sensor inputs on each genome. state_differences = dict() activations = ActivationFunctionSet() aggregations = AggregationFunctionSet() for enc_state1 in itervalues(genome.states): state1 = State(1, enc_state1.weights, enc_state1.biases, aggregations.get(enc_state1.aggregation), activations.get(enc_state1.activation)) for enc_state2 in itervalues(genome.states): key_pair = (enc_state1.key, enc_state2.key) if key_pair[0] != key_pair[1] and key_pair not in state_differences \ and key_pair[::-1] not in state_differences: state2 = State(2, enc_state2.weights, enc_state2.biases, aggregations.get(enc_state2.aggregation), activations.get(enc_state2.activation)) output_pairs = [(state1.activate(inputs), state2.activate(inputs)) for inputs in sensor_vectors] distances = [ np.average( np.abs( np.array(output_pair[0]) - np.array(output_pair[1]))) for output_pair in output_pairs ] state_differences[key_pair] = np.average(distances), np.std( distances) return state_differences
def test_1_in_1_out(self): state = State(42) state.set_biases([1]) state.set_weights([[2]]) self.assertListEqual(state.activate([5]), [11])
def test_2_in_3_out(self): state = State(42) state.set_biases([0, 1, 2]) state.set_weights([[2, 3], [4, 5], [1, 2]]) self.assertListEqual(state.activate([5, 10]), [40, 71, 27])
def test_3_in_2_out(self): state = State(42) state.set_biases([0, 1]) state.set_weights([[2, 3, 1], [4, 5, 1]]) self.assertListEqual(state.activate([5, 10, 20]), [60, 91])
def test_2_in_1_out(self): state = State(42) state.set_biases([0]) state.set_weights([[2, 3]]) self.assertListEqual(state.activate([5, 10]), [40])