def __init__(self, pre_negation_uncertainty_path, negation_path, post_negation_uncertainty_path, verbose=False): self.parser = parse.Bllip(model_dir=PARSING_MODEL_DIR) self.ptb2dep = ptb2ud.Ptb2DepConverter(universal=True) self.lemmatizer = ptb2ud.Lemmatizer() self.verbose = verbose self.detector = ModifiedDetector(pre_negation_uncertainty_path, negation_path, post_negation_uncertainty_path)
def main(argv): argv = docopt.docopt(__doc__, argv=argv) print(argv) splitter = ssplit.NltkSSplitter(newline=True) parser = parse.Bllip(model_dir=argv['--model']) ptb2dep = ptb2ud.Ptb2DepConverter(universal=True) lemmatizer = ptb2ud.Lemmatizer() neg_detector = negdetect.Detector(argv['--neg-patterns'], argv['--uncertainty-patterns']) scan.scan_document( source=argv['SOURCE'], directory=argv['--out'], suffix='.neg.xml', fn=pipeline, non_sequences=[splitter, parser, ptb2dep, lemmatizer, neg_detector])
def main(argv): argv = docopt.docopt(__doc__, argv=argv) print(argv) splitter = ssplit.NltkSSplitter(newline=argv['--newline_is_sentence_break']) parser = parse.Bllip(model_dir=argv['--bllip-model']) ptb2dep = ptb2ud.Ptb2DepConverter(universal=True) lemmatizer = ptb2ud.Lemmatizer() mm = pymetamap.MetaMap.get_instance(argv['--metamap']) neg_detector = negdetect.Detector(argv['--neg-patterns'], argv['--uncertainty-patterns']) if argv['--cuis'] == 'None': cuis = None else: cuis = dner_mm.read_cuis(argv['--cuis']) collection = text2bioc.text2collection(argv['SOURCE'], split_document=argv['--split-document']) pipeline(collection, mm, splitter, parser, ptb2dep, lemmatizer, neg_detector, cuis) with open(os.path.expanduser(argv['--out']), 'w') as fp: bioc.dump(collection, fp)