def test_lifetime_sparsity_values(self):
        feat_maps = np.zeros([10, 1, 1, 3])
        feat_maps[:5, :, :, 1] = 1.0
        feat_maps[..., 2] = 1.0

        sparsity = lifetime_sparsity(feat_maps)
        self.assertAlmostEqual(sparsity[0], 1.0)
        self.assertAlmostEqual(sparsity[1], 0.55, places=1)
        self.assertAlmostEqual(sparsity[2], 0.0)
示例#2
0
    # mean acts, mean sparsity, and number active
    plt.errorbar(x = list(range(mean_acts.size)), y = mean_acts, yerr = se_acts)
    plt.xlabel('Neuron Index')
    plt.ylabel('Mean Activation +/- 1 SE')
    plt.savefig(os.path.join(args.save_dir, 'mean_activations_line.png'), bbox_inches = 'tight')
    plt.close()

    seaborn.boxplot(y = mean_acts)
    plt.ylabel('Mean Activation')
    plt.savefig(os.path.join(args.save_dir, 'mean_activations_box.png'), bbox_inches = 'tight')
    plt.close()

    
    logging.info('PLOTTING LIFETIME SPARSITY')
    lifetime = lifetime_sparsity(acts)
    lifetime.sort()

    plt.plot(lifetime[::-1])
    plt.xlabel('Neuron Index')
    plt.ylabel('Lifetime Sparsity')
    plt.savefig(os.path.join(args.save_dir, 'lifetime_sparsity_line.png'), bbox_inches = 'tight')
    plt.close()

    seaborn.boxplot(y = lifetime)
    plt.ylabel('Lifetime Sparsity')
    plt.savefig(os.path.join(args.save_dir, 'lifetime_sparsity_box.png'), bbox_inches = 'tight')
    plt.close()


    logging.info('PLOTTING POPULATION SPARSITY')
 def test_lifetime_sparsity_shape_hw_equal_1(self):
     feat_maps = np.zeros([10, 1, 1, 7])
     sparsity = lifetime_sparsity(feat_maps)
     self.assertEqual(sparsity.size, 7)