""" pretrained_bert_model = nemo_nlp.huggingface.BERT( pretrained_model_name=args.pretrained_bert_model, factory=nf) tokenizer = BertTokenizer.from_pretrained(args.pretrained_bert_model) hidden_size = pretrained_bert_model.local_parameters["hidden_size"] data_desc = JointIntentSlotDataDesc(args.data_dir, args.do_lower_case, args.dataset_name) query = args.query if args.do_lower_case: query = query.lower() data_layer = nemo_nlp.BertJointIntentSlotInferDataLayer( queries=[query], tokenizer=tokenizer, max_seq_length=args.max_seq_length, batch_size=1) # Create sentence classification loss on top classifier = nemo_nlp.JointIntentSlotClassifier( hidden_size=hidden_size, num_intents=data_desc.num_intents, num_slots=data_desc.num_slots, dropout=args.fc_dropout) ids, type_ids, input_mask, loss_mask, subtokens_mask = data_layer() hidden_states = pretrained_bert_model(input_ids=ids, token_type_ids=type_ids, attention_mask=input_mask)
tokenizer = BertTokenizer.from_pretrained(args.pretrained_bert_model) hidden_size = pretrained_bert_model.local_parameters["hidden_size"] data_desc = JointIntentSlotDataDesc( args.dataset_name, args.data_dir, args.do_lower_case) query = args.query if args.do_lower_case: query = query.lower() dataset = nemo_nlp.BertJointIntentSlotInferDataset( queries=[query], tokenizer=tokenizer, max_seq_length=args.max_seq_length) data_layer = nemo_nlp.BertJointIntentSlotInferDataLayer(dataset, batch_size=1) # Create sentence classification loss on top classifier = nemo_nlp.JointIntentSlotClassifier( hidden_size=hidden_size, num_intents=data_desc.num_intents, num_slots=data_desc.num_slots, dropout=args.fc_dropout) ids, type_ids, input_mask, slot_mask = data_layer() hidden_states = pretrained_bert_model(input_ids=ids, token_type_ids=type_ids, attention_mask=input_mask)