def get_current_analysis(): """Populate the Analysis Editor form with the database contents for the currently selected analysis. """ session = Session() aSelected = request.args.get('aSelected') # If no analysis was selected, fill fields with blank text to # mimic 'New Analysis' behavior. if len(aSelected) == 0: return jsonify( name='', status='', tags='', question='', answer='', tree='', ) a = (session.query(NarfAnalysis).filter( NarfAnalysis.id == aSelected).first()) session.close() return jsonify( id=a.id, name=a.name, status=a.status, tags=a.tags, question=a.question, answer=a.answer, tree=a.modeltree, )
def cell_details(cellid): # Just redirects to celldb penetration info for now # Keeping as separate function incase want to add extra stuff later # (as opposed to just putting link directly in javascript) session = Session() url_root = 'http://hyrax.ohsu.edu/celldb/peninfo.php?penid=' i = cellid.find('-') cellid = cellid[:i] try: result = (session.query(gCellMaster).filter( gCellMaster.cellid == cellid).first()) except Exception as e: print(e) return Response("Couldn't open cell file -- " "this option is disabled for non-LBHB setup.") if not result: # return an error response instead? # or make it a dud link? seems wasteful to refresh page # could also redirect to celldb home page return redirect(url_for('main_view')) penid = result.penid session.close() return redirect(url_root + str(penid))
def load_user(user_id): session = Session() NarfUsers = Tables()['NarfUsers'] try: # get email match from user database # (needs to be stored as unicode per flask-login) sqla_user = (session.query(NarfUsers).filter( NarfUsers.email == user_id).first()) if not sqla_user: raise Exception() # assign attrs from table object to active user instance user = User( username=sqla_user.username, # password should be stored as bcrypt hash # (generated when registered) password=sqla_user.password, labgroup=sqla_user.labgroup, sec_lvl=sqla_user.sec_lvl, ) return user except Exception as e: log.exception(e) return None finally: session.close()
def register(): errors = '' form = RegistrationForm(request.form) if request.method == 'POST': if form.validate(): session = Session() NarfUsers = Tables()['NarfUsers'] new_user = NarfUsers( username=form.username.data, password=bcrypt.generate_password_hash(form.password.data), email=(form.email.data).encode('utf-8'), firstname=form.firstname.data, lastname=form.lastname.data, ) session.add(new_user) session.commit() session.close() return redirect(url_for('login')) else: log.info('form errors:') log.info(form.errors) return render_template( 'account_management/register.html', form=form, errors=form.errors, ) return render_template( 'account_management/register.html', form=form, errors=errors, )
def update_cells(): """Update the list of cells in the cell selector after a batch is selected (this will cascade from an analysis selection). Also updates current batch in NarfAnalysis for current analysis. """ session = Session() # Only get the numerals for the selected batch, not the description. bSelected = request.args.get('bSelected') aSelected = request.args.get('aSelected') celllist = [ i[0] for i in session.query(NarfBatches.cellid).filter( NarfBatches.batch == bSelected[:3]).all() ] batchname = (session.query(sBatch).filter( sBatch.id == bSelected[:3]).first()) if batchname: batch = str(bSelected[:3] + ': ' + batchname.name) else: batch = bSelected analysis = (session.query(NarfAnalysis).filter( NarfAnalysis.name == aSelected).first()) # don't change batch association if batch is blank if analysis and bSelected: analysis.batch = batch session.commit() session.close() return jsonify(celllist=celllist)
def update_tag_options(): user = get_current_user() session = Session() NarfAnalysis = Tables()['NarfAnalysis'] tags = [ i[0].split(",") for i in session.query(NarfAnalysis.tags).filter( or_( NarfAnalysis.public == '1', NarfAnalysis.labgroup.ilike('%{0}%'.format(user.labgroup)), NarfAnalysis.username == user.username, )).distinct().all() ] # Flatten list of lists into a single list of all tag strings # and remove leading and trailing whitespace. taglistbldupspc = [i for sublist in tags for i in sublist] taglistbldup = [t.strip() for t in taglistbldupspc] # Reform the list with only unique tags taglistbl = list(set(taglistbldup)) # Finally, remove any blank tags and sort the list. taglist = [t for t in taglistbl if t != ''] taglist.sort() session.close() return jsonify(taglist=taglist)
def check_analysis_exists(): """Check for a duplicate analysis name when an Analysis Editor form is submitted. If a duplicate exists, warn the user before overwriting. """ session = Session() NarfAnalysis = Tables()['NarfAnalysis'] nameEntered = request.args.get('nameEntered') analysisId = request.args.get('analysisId') exists = False result = (session.query(NarfAnalysis).filter( NarfAnalysis.name == nameEntered).first()) # only set to True if id is different, so that # overwriting own analysis doesn't cause flag if result and (analysisId == '__none' or (int(result.id) != int(analysisId))): exists = True session.close() return jsonify(exists=exists)
def delete_analysis(): """Delete the selected analysis from the database.""" user = get_current_user() session = Session() NarfAnalysis = Tables()['NarfAnalysis'] success = False aSelected = request.args.get('aSelected') if len(aSelected) == 0: return jsonify(success=success) result = (session.query(NarfAnalysis).filter( NarfAnalysis.id == aSelected).first()) if result is None: return jsonify(success=success) if (result.public or (result.username == user.username) or (user.labgroup in result.labgroup)): success = True session.delete(result) session.commit() else: log.info("You do not have permission to delete this analysis.") return jsonify(success=success) session.close() return jsonify(success=success)
def get_id(self): # user_id should be the unicode rep of e-mail address # (should be stored in db table in that format) session = Session() user_id = (session.query(NarfUsers.email).filter( NarfUsers.username == self.username).first()) session.close() return user_id
def __call__(self, form, field): session = Session() exists = ( session.query(NarfUsers) .filter(NarfUsers.email == field.data) .first() ) if exists: session.close() raise ValidationError(self.message) session.close()
def __call__(self, form, field): session = Session() NarfUsers = Tables()['NarfUsers'] exists = ( session.query(NarfUsers) .filter(NarfUsers.username == field.data) .first() ) if exists: session.close() raise ValidationError(self.message) session.close()
def batch_performance(): session = Session() cSelected = request.form['cSelected'] bSelected = request.form['bSelected'][:3] mSelected = request.form['mSelected'] findAll = request.form['findAll'] cSelected = cSelected.split(',') mSelected = mSelected.split(',') if int(findAll): results = psql.read_sql_query( session.query( NarfResults.cellid, NarfResults.modelname, NarfResults.r_test ) .filter(NarfResults.batch == bSelected) .statement, session.bind ) else: results = psql.read_sql_query( session.query( NarfResults.cellid, NarfResults.modelname, NarfResults.r_test ) .filter(NarfResults.batch == bSelected) .filter(NarfResults.cellid.in_(cSelected)) .filter(NarfResults.modelname.in_(mSelected)) .statement, session.bind ) # get back list of models that matched other query criteria results_models = [ m for m in list(set(results['modelname'].values.tolist())) ] # filter mSelected to match results models so that list is in the # same order as on web UI ordered_models = [ m for m in mSelected if m in results_models ] report = Performance_Report(results, bSelected, ordered_models) report.generate_plot() session.close() return render_template( 'batch_performance.html', script=report.script, div=report.div, bokeh_version=bokeh_version, )
def get_saved_selections(): session = Session() user = get_current_user() user_entry = (session.query(NarfUsers).filter( NarfUsers.username == user.username).first()) if not user_entry: return jsonify(response="user not logged in, can't load selections") selections = user_entry.selections null = False if not selections: null = True session.close() return jsonify(selections=selections, null=null)
def set_saved_selections(): user = get_current_user() if not user.username: return jsonify( response="user not logged in, can't save selections", null=True, ) session = Session() saved_selections = request.args.get('stringed_selections') user_entry = (session.query(NarfUsers).filter( NarfUsers.username == user.username).first()) user_entry.selections = saved_selections session.commit() session.close() return jsonify(response='selections saved', null=False)
def update_status_options(): user = get_current_user() session = Session() statuslist = [ i[0] for i in session.query(NarfAnalysis.status).filter( or_( NarfAnalysis.public == '1', NarfAnalysis.labgroup.ilike('%{0}%'.format(user.labgroup)), NarfAnalysis.username == user.username, )).distinct().all() ] session.close() return jsonify(statuslist=statuslist)
def update_analysis_details(): """Update contents of the analysis details popover when the analysis selection is changed. """ session = Session() NarfAnalysis = Tables()['NarfAnalysis'] # TODO: Find a better/centralized place to store these options. # Columns to display in detail popup - add/subtract here if desired. detailcols = n_ui.detailcols aSelected = request.args.get('aSelected') cols = [ getattr(NarfAnalysis, c) for c in detailcols if hasattr(NarfAnalysis, c) ] # Package query results into a DataFrame results = psql.read_sql_query( Query(cols, session).filter(NarfAnalysis.name == aSelected).statement, session.bind) detailsHTML = """""" if results.size > 0: for col in detailcols: # Use a single line for id and status columns if (col == 'id') or (col == 'status'): detailsHTML += """ <p><strong>%s</strong>: %s</p> """ % (col, results[col].iat[0]) # Use a header + paragraph for everything else else: detailsHTML += """ <h5><strong>%s</strong>:</h5> <p>%s</p> """ % (col, results[col].iat[0]) session.close() return jsonify(details=detailsHTML)
def update_batch(): """Update current batch selection after an analysis is selected.""" session = Session() blank = 0 aSelected = request.args.get('aSelected', type=str) batch = (session.query( NarfAnalysis.batch).filter(NarfAnalysis.name == aSelected).first()) try: batch = batch.batch except Exception as e: log.info(e) batch = '' blank = 1 session.close() return jsonify(batch=batch, blank=blank)
def update_models(): """Update the list of modelnames in the model selector after an analysis is selected. """ session = Session() NarfAnalysis = Tables()['NarfAnalysis'] aSelected = request.args.get('aSelected', type=str) extraModels = request.args.get('extraModels', type=str) extraAnalyses = request.args.get('extraAnalyses', type=str) extraModels = [s.strip() for s in extraModels.split(',')] extraAnalyses = [s.strip() for s in extraAnalyses.split(',')] modeltree = (session.query( NarfAnalysis.modeltree).filter(NarfAnalysis.name == aSelected).first()) # Pass modeltree string from NarfAnalysis to a ModelFinder constructor, # which will use a series of internal methods to convert the tree string # to a list of model names. # Then add any additional models specified in extraModels, and add # model_lists from extraAnalyses. if modeltree and modeltree[0]: model_list = _get_models(modeltree[0]) extraModels = [ m for m in extraModels if (m not in model_list and m.strip() != '') ] model_list.extend(extraModels) if extraAnalyses: analyses = (session.query(NarfAnalysis.modeltree).filter( NarfAnalysis.name.in_(extraAnalyses)).all()) for t in [a.modeltree for a in analyses]: extras = [m for m in _get_models(t) if m not in model_list] model_list.extend(extras) else: return jsonify(modellist="Model tree not found.") session.close() return jsonify(modellist=model_list)
def get_preview(): """Queries the database for the filepath to the preview image for the selected cell, batch and model combination(s) """ session = Session() NarfResults = Tables()['NarfResults'] # Only get the numerals for the selected batch, not the description. bSelected = request.args.get('bSelected', type=str)[:3] cSelected = request.args.getlist('cSelected[]') mSelected = request.args.getlist('mSelected[]') figurefile = None path = (session.query(NarfResults).filter( NarfResults.batch == bSelected).filter( NarfResults.cellid.in_(cSelected)).filter( NarfResults.modelname.in_(mSelected)).first()) if not path: session.close() return jsonify(image='missing preview') else: figurefile = str(path.figurefile) session.close() # Another temporary compatibility hack to convert # s3://... to https:// if figurefile.startswith('s3'): prefix = 'https://s3-us-west2.amazonaws.com' parsed = urlparse(figurefile) bucket = parsed.netloc path = parsed.path figurefile = prefix + '/' + bucket + '/' + path # TODO: this should eventually be the only thing that gets # called - above try/except ugliness is temporary for # backwards compatibility image_bytes = load_resource(figurefile) b64img = str(b64encode(image_bytes))[2:-1] return jsonify(image=b64img)
def update_analysis(): """Update list of analyses after a tag and/or filter selection changes.""" user = get_current_user() session = Session() NarfAnalysis = Tables()['NarfAnalysis'] tagSelected = request.args.getlist('tagSelected[]') statSelected = request.args.getlist('statSelected[]') # If special '__any' value is passed, set tag and status to match any # string in ilike query. if '__any' in tagSelected: tagStrings = [NarfAnalysis.tags.ilike('%%')] else: tagStrings = [ NarfAnalysis.tags.ilike('%{0}%'.format(tag)) for tag in tagSelected ] if '__any' in statSelected: statStrings = [NarfAnalysis.status.ilike('%%')] else: statStrings = [ NarfAnalysis.status.ilike('%{0}%'.format(stat)) for stat in statSelected ] analyses = (session.query(NarfAnalysis).filter(or_(*tagStrings)).filter( or_(*statStrings)).filter( or_( int(user.sec_lvl) == 9, NarfAnalysis.public == '1', NarfAnalysis.labgroup.ilike('%{0}%'.format(user.labgroup)), NarfAnalysis.username == user.username, )).order_by(asc(NarfAnalysis.id)).all()) analysislist = [a.name for a in analyses] analysis_ids = [a.id for a in analyses] session.close() return jsonify(analysislist=analysislist, analysis_ids=analysis_ids)
def update_models(): """Update the list of modelnames in the model selector after an analysis is selected. """ session = Session() aSelected = request.args.get('aSelected', type=str) modeltree = (session.query( NarfAnalysis.modeltree).filter(NarfAnalysis.name == aSelected).first()) # Pass modeltree string from NarfAnalysis to a ModelFinder constructor, # which will use a series of internal methods to convert the tree string # to a list of model names. if modeltree: mf = ModelFinder(modeltree[0]) else: return jsonify(modellist="Model tree not found.") session.close() return jsonify(modellist=mf.modellist)
def fit_report(): session = Session() db_tables = Tables() tQueue = db_tables['tQueue'] NarfResults = db_tables['NarfResults'] cSelected = request.args.getlist('cSelected[]') bSelected = request.args.get('bSelected')[:3] mSelected = request.args.getlist('mSelected[]') multi_index = pd.MultiIndex.from_product([mSelected, cSelected], names=['modelname', 'cellid']) status = pd.DataFrame(index=multi_index, columns=['yn']) tuples = list(itertools.product(cSelected, [bSelected], mSelected)) notes = ['{0}/{1}/{2}'.format(t[0], t[1], t[2]) for t in tuples] qdata = psql.read_sql_query( session.query(tQueue).filter(tQueue.note.in_(notes)).statement, session.bind, ) results = psql.read_sql_query( session.query( NarfResults.cellid, NarfResults.batch, NarfResults.modelname, ).filter(NarfResults.batch == bSelected).filter( NarfResults.cellid.in_(cSelected)).filter( NarfResults.modelname.in_(mSelected)).statement, session.bind) for i, t in enumerate(tuples): yn = 0.3 # missing try: complete = qdata.loc[qdata['note'] == notes[i], 'complete'].iloc[0] if complete < 0: yn = 0.4 # in progress elif complete == 0: yn = 0.5 # not started elif complete == 1: yn = 0.6 # finished elif complete == 2: yn = 0 # dead entry else: pass # unknown value, so leave as missing? except: try: result = results.loc[(results['cellid'] == t[0]) & (results['batch'] == int(t[1])) & (results['modelname'] == t[2]), 'cellid'].iloc[0] yn = 0.6 except: pass status['yn'].loc[t[2], t[0]] = yn status.reset_index(inplace=True) status = status.pivot(index='cellid', columns='modelname', values='yn') status = status[status.columns].astype(float) report = Fit_Report(status) report.generate_plot() session.close() image = str(b64encode(report.img_str))[2:-1] return jsonify(image=image)
def edit_analysis(): """Take input from Analysis Editor modal and save it to the database. Button : Edit Analysis """ user = get_current_user() session = Session() NarfAnalysis = Tables()['NarfAnalysis'] modTime = datetime.datetime.now().replace(microsecond=0) eName = request.args.get('name') eId = request.args.get('id') eStatus = request.args.get('status') eTags = request.args.get('tags') eQuestion = request.args.get('question') eAnswer = request.args.get('answer') eLoad = request.args.get('load') eMod = request.args.get('mod') eFit = request.args.get('fit') eTree = json.dumps([eLoad, eMod, eFit]) if eId == '__none': checkExists = False else: checkExists = (session.query(NarfAnalysis).filter( NarfAnalysis.id == eId).first()) if checkExists: a = checkExists if (a.public or (user.labgroup in a.labgroup) or (a.username == user.username)): a.name = eName a.status = eStatus a.question = eQuestion a.answer = eAnswer a.tags = eTags try: a.lastmod = modTime except: a.lastmod = str(modTime) a.modeltree = eTree else: log.info("You do not have permission to modify this analysis.") return jsonify(success=("failed")) # If it doesn't exist, add new sql alchemy object with the # appropriate attributes, which should get assigned to a new id else: # TODO: Currently copies user's labgroup by default. # Is that the behavior we want? try: a = NarfAnalysis(name=eName, status=eStatus, question=eQuestion, answer=eAnswer, tags=eTags, batch='', lastmod=modTime, modeltree=eTree, username=user.username, labgroup=user.labgroup, public='0') except: a = NarfAnalysis(name=eName, status=eStatus, question=eQuestion, answer=eAnswer, tags=eTags, batch='', lastmod=str(modTime), modeltree=eTree, username=user.username, labgroup=user.labgroup, public='0') session.add(a) addedName = a.name session.commit() session.close() # After handling submissions, return user to main page so that it # refreshes with new analysis included in list return jsonify(success="Analysis %s saved successfully." % addedName)
def update_results(): """Update the results table after a batch, cell or model selection is changed. """ user = get_current_user() session = Session() NarfResults = Tables()['NarfResults'] nullselection = """ MUST SELECT A BATCH AND ONE OR MORE CELLS AND ONE OR MORE MODELS BEFORE RESULTS WILL UPDATE """ bSelected = request.args.get('bSelected') cSelected = request.args.getlist('cSelected[]') mSelected = request.args.getlist('mSelected[]') colSelected = request.args.getlist('colSelected[]') # If no batch, cell or model is selected, display an error message. if (len(bSelected) == 0) or (not cSelected) or (not mSelected): return jsonify(resultstable=nullselection) # Only get numerals for selected batch. bSelected = bSelected[:3] # Use default value of 500 if no row limit is specified. rowlimit = request.args.get('rowLimit', 500) ordSelected = request.args.get('ordSelected') # Parse string into appropriate sqlalchemy method if ordSelected == 'asc': ordSelected = asc elif ordSelected == 'desc': ordSelected = desc sortSelected = request.args.get('sortSelected', 'cellid') # Always add cellid and modelname to column lists, # since they are required for selection behavior. cols = [ getattr(NarfResults, 'cellid'), getattr(NarfResults, 'modelname'), ] cols += [ getattr(NarfResults, c) for c in colSelected if hasattr(NarfResults, c) ] # Package query results into a DataFrame results = psql.read_sql_query( Query(cols, session).filter(NarfResults.batch == bSelected).filter( NarfResults.cellid.in_(cSelected)).filter( NarfResults.modelname.in_(mSelected)).filter( or_( int(user.sec_lvl) == 9, NarfResults.public == '1', NarfResults.labgroup.ilike('%{0}%'.format( user.labgroup)), NarfResults.username == user.username, )).order_by(ordSelected(getattr( NarfResults, sortSelected))).limit(rowlimit).statement, session.bind) with pd.option_context('display.max_colwidth', -1): resultstable = results.to_html( index=False, classes="table-hover table-condensed", ) session.close() return jsonify(resultstable=resultstable)
def edit_analysis(): """Take input from Analysis Editor modal and save it to the database. Button : Edit Analysis """ user = get_current_user() session = Session() modTime = datetime.datetime.now().replace(microsecond=0) eName = request.args.get('name') eId = request.args.get('id') eStatus = request.args.get('status') eTags = request.args.get('tags') eQuestion = request.args.get('question') eAnswer = request.args.get('answer') eTree = request.args.get('tree') #TODO: add checks to require input inside form fields # or allow blank so that people can erase stuff? # Turned this off for now -- can re-enable when rule needs are more stable # Make sure the keyword combination is valid using nems.keyword_rules #try: # mf = ModelFinder(eTree) # for modelname in mf.modellist: # keyword_test_routine(modelname) #except Exception as e: # return jsonify(success='Analysis not saved: \n' + str(e)) if eId == '__none': checkExists = False else: checkExists = (session.query(NarfAnalysis).filter( NarfAnalysis.id == eId).first()) if checkExists: a = checkExists if (a.public or (user.labgroup in a.labgroup) or (a.username == user.username)): a.name = eName a.status = eStatus a.question = eQuestion a.answer = eAnswer a.tags = eTags try: a.lastmod = modTime except: a.lastmod = str(modTime) a.modeltree = eTree else: log.info("You do not have permission to modify this analysis.") return jsonify(success=("failed")) # If it doesn't exist, add new sql alchemy object with the # appropriate attributes, which should get assigned to a new id else: # TODO: Currently copies user's labgroup by default. # Is that the behavior we want? try: a = NarfAnalysis(name=eName, status=eStatus, question=eQuestion, answer=eAnswer, tags=eTags, batch='', lastmod=modTime, modeltree=eTree, username=user.username, labgroup=user.labgroup, public='0') except: a = NarfAnalysis(name=eName, status=eStatus, question=eQuestion, answer=eAnswer, tags=eTags, batch='', lastmod=str(modTime), modeltree=eTree, username=user.username, labgroup=user.labgroup, public='0') session.add(a) # For verifying correct logging - comment these out # when not needed for testing. #log.info("Added the following analysis to database:") #log.info("------------------") #log.info("name:"); log.info(a.name) #log.info("question:"); log.info(a.question) #log.info("answer:"); log.info(a.answer) #log.info("status:"); log.info(a.status) #log.info("tags:"); log.info(a.tags) #log.info("model tree:"); log.info(a.modeltree) #log.info("-----------------\n\n") addedName = a.name session.commit() session.close() # After handling submissions, return user to main page so that it # refreshes with new analysis included in list return jsonify(success="Analysis %s saved successfully." % addedName)
def make_jerb_json(): user = get_current_user() session = Session() # .all() returns a list of tuples, so it's necessary to pull the # name elements out into a list by themselves. analyses = (session.query(NarfAnalysis).filter( or_( int(user.sec_lvl) == 9, NarfAnalysis.public == '1', NarfAnalysis.labgroup.ilike('%{0}%'.format(user.labgroup)), NarfAnalysis.username == user.username, )).order_by(asc(NarfAnalysis.id)).all()) analysislist = [a.name for a in analyses] batchids = [ i[0] for i in session.query(NarfBatches.batch).distinct() #.filter(or_( # int(user.sec_lvl) == 9, # NarfBatches.public == '1', # NarfBatches.labgroup.ilike('%{0}%'.format(user.labgroup)), # NarfBatches.username == user.username, # )) .all() ] batchnames = [] for i in batchids: name = (session.query(sBatch.name).filter(sBatch.id == i).first()) if not name: batchnames.append('') else: batchnames.append(name.name) batchlist = [(batch + ': ' + batchnames[i]) for i, batch in enumerate(batchids)] batchlist.sort() session.close() s3 = boto3.resource('s3') bucket = s3.Bucket('nemsdata') jerb_json = { 'name': 'Analysis', 'children': [], } for i, analysis in enumerate(analysislist): jerb_json['children'].append({'name': analysis, 'children': []}) jerb_json['children'][i]['children'].extend([{ 'name': 'batch', 'children': [{ 'name': batch, 'leaf': 1 } for batch in batchlist] }, { 'name': 'models', 'children': [{ 'name': model, 'leaf': 1 } for model in ['fake', 'model', 'list']] }, { 'name': 'data', 'children': [{ 'name': obj.key.strip('nems_in_cache/batch291/'), 'leaf': 1 } for i, obj in enumerate( bucket.objects.filter(Prefix='nems_in_cache/batch291/')) if i < 20] }]) return jerb_json
def main_view(): """Initialize the nems_analysis landing page. Queries the database to get lists of available analyses, batches, status filters, tag filters, and results columns. Specifies defaults for results columns, row limit and sort column. Returns: -------- main.html : template The landing page template rendered with variables for analysislist, batchlist, collist, defaultcols, measurelist, defaultrowlimit, sortlist, defaultsort, statuslist, and taglist. """ # TODO: figure out how to integrate sec_lvl/superuser mode # maybe need to add sec_lvl column to analysis/batches/results? # then can compare in query ex: if user.sec_lvl > analysis.sec_lvl user = get_current_user() session = Session() db_tables = Tables() NarfResults = db_tables['NarfResults'] NarfAnalysis = db_tables['NarfAnalysis'] NarfBatches = db_tables['NarfBatches'] sBatch = db_tables['sBatch'] # .all() returns a list of tuples, so it's necessary to pull the # name elements out into a list by themselves. analyses = (session.query(NarfAnalysis).filter( or_( int(user.sec_lvl) == 9, NarfAnalysis.public == '1', NarfAnalysis.labgroup.ilike('%{0}%'.format(user.labgroup)), NarfAnalysis.username == user.username, )).order_by(asc(NarfAnalysis.id)).all()) analysislist = [a.name for a in analyses] analysis_ids = [a.id for a in analyses] batchids = [ i[0] for i in session.query(NarfBatches.batch).distinct() #.filter(or_( # int(user.sec_lvl) == 9, # NarfBatches.public == '1', # NarfBatches.labgroup.ilike('%{0}%'.format(user.labgroup)), # NarfBatches.username == user.username, # )) .all() ] batchnames = [] for i in batchids: name = (session.query(sBatch.name).filter(sBatch.id == i).first()) if not name: batchnames.append('') else: batchnames.append(name.name) batchlist = [(batch + ': ' + batchnames[i]) for i, batch in enumerate(batchids)] batchlist.sort() # Default settings for results display. # TODO: let user choose their defaults and save for later sessions # cols are in addition to cellid, modelname and batch, # which are set up to be required defaultcols = n_ui.cols defaultrowlimit = n_ui.rowlimit defaultsort = n_ui.sort measurelist = n_ui.measurelist statuslist = [ i[0] for i in session.query(NarfAnalysis.status).filter( NarfAnalysis.name.in_(analysislist)).distinct().all() ] # Separate tags into list of lists of strings. tags = [ i[0].split(",") for i in session.query(NarfAnalysis.tags).filter( NarfAnalysis.name.in_(analysislist)).distinct().all() ] # Flatten list of lists into a single list of all tag strings # and remove leading and trailing whitespace. taglistbldupspc = [i for sublist in tags for i in sublist] taglistbldup = [t.strip() for t in taglistbldupspc] # Reform the list with only unique tags taglistbl = list(set(taglistbldup)) # Finally, remove any blank tags and sort the list. taglist = [t for t in taglistbl if t != ''] taglist.sort() # Returns all columns in the format 'NarfResults.columnName,' # then removes the leading 'NarfResults.' from each string collist = ['%s' % (s) for s in NarfResults.__table__.columns] collist = [s.replace('NarfResults.', '') for s in collist] sortlist = copy.deepcopy(collist) # Remove cellid and modelname from options toggles- make them required. required_cols = n_ui.required_cols for col in required_cols: collist.remove(col) # imported at top from PlotGenerator plotTypeList = PLOT_TYPES # imported at top from nems_web.run_scrits.script_utils scriptList = scan_for_scripts() session.close() return render_template('main.html', analysislist=analysislist, analysis_ids=analysis_ids, batchlist=batchlist, collist=collist, defaultcols=defaultcols, measurelist=measurelist, defaultrowlimit=defaultrowlimit, sortlist=sortlist, defaultsort=defaultsort, statuslist=statuslist, taglist=taglist, plotTypeList=plotTypeList, username=user.username, seclvl=int(user.sec_lvl), iso=n_ui.iso, snr=n_ui.snr, snri=n_ui.snri, scripts=scriptList, bokeh_version=bokeh_version)
def generate_plot_html(): session = Session() plotType = request.args.get('plotType') bSelected = request.args.get('bSelected')[:3] mSelected = request.args.getlist('mSelected[]') cSelected = request.args.getlist('cSelected[]') measure = request.args.get('measure') onlyFair = request.args.get('onlyFair') if int(onlyFair): onlyFair = True else: onlyFair = False includeOutliers = request.args.get('includeOutliers') if int(includeOutliers): includeOutliers = True else: includeOutliers = False # TODO: Re-do this to include any new criteria dynamically instead of # hard-coding snr/iso/snri. filterCriteria = { 'snr' : float(request.args.get('snr')), 'iso' : float(request.args.get('iso')), 'snri' : float(request.args.get('snri')), } # TODO: Looks like this is what NARF does, but not 100% sure. # Always exclude negative values for key in filterCriteria: if filterCriteria[key] < 0: filterCriteria[key] = 0 removalCount = 0 for cellid in cSelected: dbCriteria = ( session.query(NarfBatches) .filter(NarfBatches.batch == bSelected) .filter(NarfBatches.cellid == cellid) .all() ) if dbCriteria: if len(dbCriteria) > 1: log.info( "Multiple results found for cellid: %s in batch: %s" %(cellid, bSelected) )#!/usr/bin/env python3 min_snr = min(dbCriteria[0].est_snr, dbCriteria[0].val_snr) min_isolation = dbCriteria[0].min_isolation min_snr_index = dbCriteria[0].min_snr_index a = (filterCriteria['snr'] > min_snr) b = (filterCriteria['iso'] > min_isolation) c = (filterCriteria['snri'] > min_snr_index) if a or b or c: filterReason = "" if a: filterReason += ( "min snr: %s -- was less than criteria: %s\n" %(min_snr, filterCriteria['snr']) ) if b: filterReason += ( "min iso: %s -- was less than criteria: %s\n" %(min_isolation, filterCriteria['iso']) ) if c: filterReason += ( "min snr index: %s -- was less than criteria: %s\n" %(min_snr_index, filterCriteria['snri']) ) #log.info( # "Removing cellid: %s,\n" # "because: %s" # %(cellid, filterReason) # ) cSelected.remove(cellid) removalCount += 1 else: log.info( "No entry in NarfBatches for cellid: %s in batch: %s" %(cellid, bSelected) ) cSelected.remove(cellid) removalCount += 1 log.info("Number of cells filtered due to snr/iso criteria: %d"%removalCount) results = psql.read_sql_query( session.query(NarfResults) .filter(NarfResults.batch == bSelected) .filter(NarfResults.cellid.in_(cSelected)) .filter(NarfResults.modelname.in_(mSelected)) .statement, session.bind ) log.debug("Results retrieved, with size: {}".format(results.size)) # get back list of models that matched other query criteria results_models = [ m for m in list(set(results['modelname'].values.tolist())) ] # filter mSelected to match results models so that list is in the # same order as on web UI ordered_models = [ m for m in mSelected if m in results_models ] log.debug("Modelnames re-ordered and filtered to: {}".format(ordered_models)) Plot_Class = getattr(pg, plotType) plot = Plot_Class( data=results, measure=measure, models=ordered_models, fair=onlyFair, outliers=includeOutliers, ) log.debug("Plot successfully initialized") if plot.emptycheck: log.info('Plot checked empty after forming data array') return jsonify(script='Empty',div='Plot') else: plot.generate_plot() session.close() if hasattr(plot, 'script') and hasattr(plot, 'div'): return jsonify(script=plot.script, div=plot.div) elif hasattr(plot, 'html'): return jsonify(html=plot.html) elif hasattr(plot, 'img_str'): image = str(b64encode(plot.img_str))[2:-1] return jsonify(image=image) else: return jsonify(script="Couldn't find anything ", div="to return")