示例#1
0
def create_ptd_masks(rec, act_pup_range=2):
    """
    Create active behavior mask, passive mask, passive big pupil mask, and passive small pupil mask.
    return new recording with the four masks as signals.

    Modified 2/20/2020, CRH. Now, define large pupil as pupil matched to active (w/in 2sd). 
    Small pupil is the (smaller tail) leftover.

    Modified 07/13/2020, CRH. Now, specify how many sd from the mean of active counts as big pupil.
        default is still 2.
    """

    r = rec.copy()
    r = r.create_mask(True)

    act_mask = r.and_mask(['HIT_TRIAL'])['mask']
    pass_mask = r.and_mask(['PASSIVE_EXPERIMENT'])['mask']
    miss_mask = r.and_mask(['MISS_TRIAL'])['mask']

    # define the cutoff as two sd less than the mean of active pupil
    cutoff = r['pupil']._data[act_mask._data].mean() - (act_pup_range * r['pupil']._data[act_mask._data].std())

    options = {'state': 'big', 'method': 'user_def_value', 'cutoff': cutoff, 'collapse': True, 'epoch': ['REFERENCE', 'TARGET']}
    pass_big_mask = create_pupil_mask(r.and_mask(['PASSIVE_EXPERIMENT']), **options)['mask']
    options['state'] = 'small'
    pass_small_mask = create_pupil_mask(r.and_mask(['PASSIVE_EXPERIMENT']), **options)['mask']

    r['a_mask'] = r['mask']._modified_copy(act_mask._data)
    r['p_mask'] = r['mask']._modified_copy(pass_mask._data)
    r['miss_mask'] = r['mask']._modified_copy(miss_mask._data)
    r['pb_mask'] = r['mask']._modified_copy(pass_big_mask._data)
    r['ps_mask'] = r['mask']._modified_copy(pass_small_mask._data)

    return r
示例#2
0
def get_pupil_balanced_epochs(rec, rec_sp=None, rec_bp=None):
    """
    Given big/small pupil recordings return list of
    epochs that are balanced between the two.
    """
    all_epochs = np.unique(
        [str(ep) for ep in rec.epochs.name if 'STIM_00' in ep]).tolist()

    if (rec_sp is None) | (rec_bp is None):
        pup_ops = {'state': 'big', 'epoch': ['REFERENCE'], 'collapse': True}
        rec_bp = create_pupil_mask(rec.copy(), **pup_ops)
        pup_ops['state'] = 'small'
        rec_sp = create_pupil_mask(rec.copy(), **pup_ops)

        rec_bp = rec_bp.apply_mask(reset_epochs=True)
        rec_sp = rec_sp.apply_mask(reset_epochs=True)

    # get rid of pre/post stim silence
    #rec_bp = rec_bp.and_mask(['PostStimSilence'], invert=True)
    #rec_sp = rec_sp.and_mask(['PostStimSilence'], invert=True)
    #rec = rec.and_mask(['PostStimSilence'], invert=True)
    #rec_bp = rec_bp.apply_mask(reset_epochs=True)
    #rec_sp = rec_sp.apply_mask(reset_epochs=True)
    #rec = rec.apply_mask(reset_epochs=True)

    # find pupil matched epochs
    balanced_eps = []
    for ep in all_epochs:
        sp = rec_sp['resp'].extract_epoch(ep).shape[0]
        bp = rec_bp['resp'].extract_epoch(ep).shape[0]
        if len(all_epochs) == 3:
            if abs(sp - bp) < 3:
                balanced_eps.append(ep)
        else:
            if sp == bp:
                balanced_eps.append(ep)

    if len(balanced_eps) == 0:
        log.info("no balanced epochs at site {}".format(rec.name))

    else:
        log.info("found {0} balanced epochs:".format(len(balanced_eps)))

    return balanced_eps
示例#3
0
low = 0.5
high = 2  # for filtering the projection

cells, _ = parse_cellid(ops)
rec = generate_state_corrected_psth(batch=batch, modelname=xmodel, cellids=cells, siteid=site,
                                    cache_path=path, gain_only=False, recache=False)
rec = rec.apply_mask(reset_epochs=True)
pupil = rec['pupil']._data.squeeze()
epochs = [e for e in rec.epochs.name.unique() if 'STIM' in e]
rec['resp2'] = rec['resp']._modified_copy(rec['resp']._data)
rec['pupil2'] = rec['pupil']._modified_copy(rec['pupil']._data)

# ===================================== perform analysis on raw data =======================================
rec_bp = rec.copy()
ops = {'state': 'big', 'method': 'median', 'epoch': ['REFERENCE'], 'collapse': True}
rec_bp = create_pupil_mask(rec_bp, **ops)
ops = {'state': 'small', 'method': 'median', 'epoch': ['REFERENCE'], 'collapse': True}
rec_sp = rec.copy()
rec_sp = create_pupil_mask(rec_sp, **ops)

real_dict_small = rec_sp['resp'].extract_epochs(epochs, mask=rec_sp['mask'])
real_dict_big = rec_bp['resp'].extract_epochs(epochs, mask=rec_bp['mask'])
real_dict_all = rec['resp'].extract_epochs(epochs)
pred_dict_all = rec['psth'].extract_epochs(epochs)

real_dict_small = cpreproc.zscore_per_stim(real_dict_small, d2=real_dict_small, with_std=True)
real_dict_big = cpreproc.zscore_per_stim(real_dict_big, d2=real_dict_big, with_std=True)
real_dict_all = cpreproc.zscore_per_stim(real_dict_all, d2=real_dict_all, with_std=True)
pred_dict_all = cpreproc.zscore_per_stim(pred_dict_all, d2=pred_dict_all, with_std=True)

eps = list(real_dict_big.keys())
示例#4
0
    ops = {
        'batch': batch,
        'siteid': site,
        'rasterfs': 4,
        'pupil': 1,
        'rem': 1,
        'stim': 0
    }
    uri = nb.baphy_load_recording_uri(**ops)

    rec = Recording.load(uri)
    rec = rec.and_mask(['PreStimSilence'])
    rec = rec.apply_mask(reset_epochs=True)

    pup_ops = {'state': 'big', 'epoch': ['REFERENCE'], 'collapse': True}
    bp_mask = create_pupil_mask(rec, **pup_ops)['mask']
    sp_mask = bp_mask._modified_copy(~bp_mask._data)
    rec_sp = rec.copy()
    rec_sp['mask'] = sp_mask
    rec_sp = rec_sp.apply_mask(reset_epochs=True)
    rec_bp = rec.copy()
    rec_bp['mask'] = bp_mask
    rec_bp = rec_bp.apply_mask(reset_epochs=True)

    # Get response dictionaries
    epochs = 'PreStimSilence'
    big_r = rec['resp'].extract_epochs(epochs, mask=bp_mask)
    small_r = rec['resp'].extract_epochs(epochs, mask=sp_mask)
    cells = big_r['PreStimSilence'].shape[1]
    big_r['PreStimSilence'] = big_r['PreStimSilence'].transpose(
        [0, 2, 1]).reshape(-1, cells, 1)
示例#5
0
#rec1 = preproc.regress_state(rec1, state_sigs=['pupil'], regress=['pupil'])
#rec12 = preproc.regress_state(rec12, state_sigs=['pupil', 'lv'], regress=['pupil', 'lv'])
psth = preproc.generate_psth(rec12)
data = rec1['resp']._data - rec1['pred']._data + psth['psth']._data
rec1['resp'] = rec1['resp']._modified_copy(data)

psth = preproc.generate_psth(rec12)
data = rec12['resp']._data - rec12['pred']._data + psth['psth']._data
rec12['resp'] = rec12['resp']._modified_copy(data)

# mask pupil, compute noise corr, plot noise corr
f, ax = plt.subplots(1, 2)
for j, (r, s) in enumerate(zip([rec, rec1, rec12], ['raw', '1st', '1st+2nd'])):
    pup_ops = {'state': 'big', 'epoch': ['REFERENCE'], 'collapse': True}
    rec_bp = create_pupil_mask(r.copy(), **pup_ops)
    pup_ops['state'] = 'small'
    rec_sp = create_pupil_mask(r.copy(), **pup_ops)
    rec_bp = rec_bp.apply_mask(reset_epochs=True)
    rec_sp = rec_sp.apply_mask(reset_epochs=True)

    eps = np.unique([e for e in rec.epochs.name if 'STIM' in e]).tolist()

    real_dict_all = r['resp'].extract_epochs(eps)
    real_dict_small = rec_sp['resp'].extract_epochs(eps)
    real_dict_big = rec_bp['resp'].extract_epochs(eps)

    real_dict_all = preproc.zscore_per_stim(real_dict_all, d2=real_dict_all)
    real_dict_small = preproc.zscore_per_stim(real_dict_small,
                                              d2=real_dict_small)
    real_dict_big = preproc.zscore_per_stim(real_dict_big, d2=real_dict_big)
    ax[2].legend(frameon=False)
    ax[2].set_xlim((0, rec['resp'].shape[-1]))

    ax[3].set_title("Spike raster")
    ax[3].imshow(rec['resp']._data - rec['psth_sp']._data,
                 aspect='auto',
                 cmap='Greys')

    f.tight_layout()

    # mask data and plot before / after noise correlations
    rec = rec.and_mask(['PreStimSilence', 'PostStimSilence'], invert=True)
    bp = create_pupil_mask(
        rec, **{
            'state': 'big',
            'method': 'median',
            'epoch': ['REFERENCE'],
            'collapse': True
        })
    sp = create_pupil_mask(
        rec, **{
            'state': 'small',
            'method': 'median',
            'epoch': ['REFERENCE'],
            'collapse': True
        })
    bp = compute_rsc(bp['resp'].extract_epochs(epochs, mask=bp['mask']))
    sp = compute_rsc(sp['resp'].extract_epochs(epochs, mask=sp['mask']))

    if significant_pairs:
        m = (bp['pval'] < 0.05) | (sp['pval'] < 0.05)