示例#1
0
def test_all_negative_activities(allclose, plt, seed, Simulator, Solver):
    class CheckActivitiesSolver(Solver):
        def __call__(self, A, Y, rng=np.random):
            assert np.all(A < 0)
            return super().__call__(A, Y, rng=rng)

    val = -0.5

    with nengo.Network(seed=seed) as net:
        input = nengo.Node(output=val, label="input")
        ens = nengo.Ensemble(
            30,
            1,
            neuron_type=nengo.Tanh(),
            encoders=Choice([[1]]),
            intercepts=Uniform(0, 0.95),
            eval_points=Uniform(-1, -0.1),
        )
        nengo.Connection(input, ens)
        in_p = nengo.Probe(input, "output")
        ens_p = nengo.Probe(
            ens, "decoded_output", synapse=0.05, solver=CheckActivitiesSolver()
        )

    with Simulator(net) as sim:
        sim.run(0.3)

    t = sim.trange()
    plt.plot(t, sim.data[in_p], label="Input")
    plt.plot(t, sim.data[ens_p], label="Neuron approximation, pstc=0.05")
    plt.xlim(right=t[-1])
    plt.legend(loc=0)

    assert allclose(sim.data[in_p], val, atol=0.1, rtol=0.01)
    assert allclose(sim.data[ens_p][-10:], val, atol=0.1, rtol=0.01)
示例#2
0
def test_random_spiking(Simulator, inference_only, seed):
    with nengo.Network() as net:
        config.configure_settings(inference_only=inference_only)

        inp = nengo.Node([1])
        ens0 = nengo.Ensemble(100, 1, neuron_type=nengo.Tanh(), seed=seed)
        ens1 = nengo.Ensemble(
            100,
            1,
            neuron_type=nengo.StochasticSpiking(nengo.Tanh()),
            seed=seed,
        )
        ens2 = nengo.Ensemble(
            100,
            1,
            neuron_type=nengo.PoissonSpiking(nengo.Tanh()),
            seed=seed,
        )

        nengo.Connection(inp, ens0, synapse=None)
        nengo.Connection(inp, ens1, synapse=None)
        nengo.Connection(inp, ens2, synapse=None)

        p0 = nengo.Probe(ens0.neurons)
        p1 = nengo.Probe(ens1.neurons)
        p2 = nengo.Probe(ens2.neurons)

    with pytest.warns(None) as recwarns:
        with Simulator(net, seed=seed) as sim:
            sim.run_steps(10000)

    assert not any("native TensorFlow implementation" in str(w.message)
                   for w in recwarns)

    assert np.allclose(sim.data[p0][0],
                       np.mean(sim.data[p1], axis=0),
                       atol=1,
                       rtol=2e-1)
    assert np.allclose(sim.data[p0],
                       np.mean(sim.data[p2], axis=0),
                       atol=1,
                       rtol=1e-1)
示例#3
0
def test_simneuronsmerger_warning(rng):
    nt = nengo.PoissonSpiking(nengo.Tanh())
    op1 = SimNeurons(
        nt, J=Signal(shape=(1,)), output=Signal(shape=(1,)), state={"rng": rng}
    )

    op2 = SimNeurons(
        nt, J=Signal(shape=(1,)), output=Signal(shape=(1,)), state={"rng": rng}
    )
    assert SimNeuronsMerger.is_mergeable(op1, op2)
    with pytest.warns(UserWarning, match="Extra state has been modified"):
        SimNeuronsMerger.merge([op1, op2])