示例#1
0
    def __init__(self,
                 input_vocab,
                 output_vocab,
                 label,
                 mapping,
                 n_neurons_per_dim,
                 feedback=.7,
                 threshold=0,
                 sender=True,
                 receiver=True,
                 **kwargs):

        super(AMProcessor, self).__init__(input_vocab=input_vocab,
                                          output_vocab=output_vocab,
                                          label=label,
                                          n_neurons_per_dim=n_neurons_per_dim,
                                          sender=sender,
                                          receiver=receiver,
                                          **kwargs)

        with self:

            self.AM = spa.ThresholdingAssocMem(
                threshold=threshold,
                input_vocab=input_vocab,
                output_vocab=output_vocab,
                mapping=mapping,
                label=self.label + ' AM',
                n_neurons=n_neurons_per_dim['AM'])

            if type(self) == AMProcessor:
                nengo.Connection(self.processing_input.output, self.AM.input)

            nengo.Connection(self.AM.selection.thresholding.output,
                             self.AM.selection.thresholding.input,
                             transform=feedback)
            nengo.Connection(self.AM.output,
                             self.processing_output.input,
                             synapse=None)
示例#2
0
def experiment(dim=512,
               n_hierarchy=3,
               n_items=16,
               seed=0,
               limit=5,
               res=128,
               thresh=0.5,
               neural=False,
               neurons_per_dim=25,
               time_per_item=1.0,
               max_items=100):
    rng = np.random.RandomState(seed=seed)

    X, Y = get_fixed_dim_sub_toriod_axes(
        dim=dim,
        n_proj=3,
        scale_ratio=0,
        scale_start_index=0,
        rng=rng,
        eps=0.001,
    )

    xs = np.linspace(-limit, limit, res)
    ys = np.linspace(-limit, limit, res)
    hmv = get_heatmap_vectors(xs, ys, X, Y)

    item_vecs = rng.normal(size=(n_items, dim))
    for i in range(n_items):
        item_vecs[i, :] = item_vecs[i, :] / np.linalg.norm(item_vecs[i, :])

    locations = rng.uniform(low=-limit, high=limit, size=(n_items, 2))

    if n_hierarchy == 1:  # no hierarchy case

        # Encode items into memory
        mem = np.zeros((dim, ))
        for i in range(n_items):
            mem += (spa.SemanticPointer(data=item_vecs[i, :]) *
                    encode_point(locations[i, 0], locations[i, 1], X, Y)).v
        mem /= np.linalg.norm(mem)

        mem_sp = spa.SemanticPointer(data=mem)

        estims = np.zeros((
            n_items,
            dim,
        ))
        sims = np.zeros((n_items, ))
        if neural:
            # save time for very large numbers of items
            n_exp_items = min(n_items, max_items)
            estims = np.zeros((
                n_exp_items,
                dim,
            ))
            sims = np.zeros((n_exp_items, ))

            model = nengo.Network(seed=seed)
            with model:
                input_node = nengo.Node(
                    lambda t: item_vecs[int(np.floor(t)) % n_items, :],
                    size_in=0,
                    size_out=dim)
                mem_node = nengo.Node(mem, size_in=0, size_out=dim)

                cconv = nengo.networks.CircularConvolution(
                    n_neurons=neurons_per_dim, dimensions=dim, invert_b=True)

                nengo.Connection(mem_node, cconv.input_a)
                nengo.Connection(input_node, cconv.input_b)

                out_node = nengo.Node(size_in=dim, size_out=0)

                nengo.Connection(cconv.output, out_node)

                p_out = nengo.Probe(out_node, synapse=0.01)

            sim = nengo.Simulator(model)
            sim.run(n_exp_items * time_per_item)

            output_data = sim.data[p_out]
            timesteps_per_item = int(time_per_item / 0.001)

            # timestep offset to cancel transients
            offset = 100
            for i in range(n_exp_items):
                estims[i, :] = output_data[i * timesteps_per_item +
                                           offset:(i + 1) *
                                           timesteps_per_item, :].mean(axis=0)
                sims[i] = np.dot(
                    estims[i, :],
                    encode_point(locations[i, 0], locations[i, 1], X, Y).v)

            pred_locs = ssp_to_loc_v(estims, hmv, xs, ys)

            errors = np.linalg.norm(pred_locs - locations[:n_exp_items, :],
                                    axis=1)

            accuracy = len(np.where(errors < thresh)[0]) / n_items

            rmse = np.sqrt(np.mean(errors**2))

            sim = np.mean(sims)
        else:
            # retrieve items
            for i in range(n_items):
                estims[i, :] = (mem_sp *
                                ~spa.SemanticPointer(data=item_vecs[i, :])).v

                sims[i] = np.dot(
                    estims[i, :],
                    encode_point(locations[i, 0], locations[i, 1], X, Y).v)

            pred_locs = ssp_to_loc_v(estims, hmv, xs, ys)

            errors = np.linalg.norm(pred_locs - locations, axis=1)

            accuracy = len(np.where(errors < thresh)[0]) / n_items

            rmse = np.sqrt(np.mean(errors**2))

            sim = np.mean(sims)

    elif n_hierarchy == 2:
        # TODO: generate vocab and input sequences

        n_ids = int(np.sqrt(n_items))
        f_n_ids = np.sqrt(n_items)

        id_vecs = rng.normal(size=(n_ids, dim))
        for i in range(n_ids):
            id_vecs[i, :] = id_vecs[i, :] / np.linalg.norm(id_vecs[i, :])

        # items to be included in each ID vec
        item_sums = np.zeros((n_ids, dim))
        item_loc_sums = np.zeros((n_ids, dim))
        for i in range(n_items):
            id_ind = min(i // n_ids, n_ids - 1)
            # id_ind = min(int(i / f_n_ids), n_ids - 1)
            item_sums[id_ind, :] += item_vecs[i, :]
            item_loc_sums[id_ind, :] += (
                spa.SemanticPointer(data=item_vecs[i, :]) *
                encode_point(locations[i, 0], locations[i, 1], X, Y)).v

        # Encode id_vecs into memory, each id is bound to something that has similarity to all items in the ID's map
        mem = np.zeros((dim, ))
        for i in range(n_ids):
            # normalize previous memories
            item_sums[i, :] = item_sums[i, :] / np.linalg.norm(item_sums[i, :])
            item_loc_sums[i, :] = item_loc_sums[i, :] / np.linalg.norm(
                item_loc_sums[i, :])

            mem += (spa.SemanticPointer(data=id_vecs[i, :]) *
                    spa.SemanticPointer(data=item_sums[i, :])).v
        mem /= np.linalg.norm(mem)

        mem_sp = spa.SemanticPointer(data=mem)

        estims = np.zeros((
            n_items,
            dim,
        ))
        sims = np.zeros((n_items, ))

        # retrieve items
        for i in range(n_items):
            # noisy ID for the map with this item
            estim_id = (mem_sp * ~spa.SemanticPointer(data=item_vecs[i, :])).v

            # get closest clean match
            id_sims = np.zeros((n_ids, ))
            for j in range(n_ids):
                id_sims[j] = np.dot(estim_id, id_vecs[j, :])

            best_ind = np.argmax(id_sims)

            # clean_id = id_vecs[best_ind, :]

            # item_loc_sums comes from the associative mapping from clean_id

            estims[i, :] = (
                spa.SemanticPointer(data=item_loc_sums[best_ind, :]) *
                ~spa.SemanticPointer(data=item_vecs[i, :])).v

            sims[i] = np.dot(
                estims[i, :],
                encode_point(locations[i, 0], locations[i, 1], X, Y).v)

        pred_locs = ssp_to_loc_v(estims, hmv, xs, ys)

        errors = np.linalg.norm(pred_locs - locations, axis=1)

        accuracy = len(np.where(errors < thresh)[0]) / n_items

        rmse = np.sqrt(np.mean(errors**2))

        sim = np.mean(sims)

    elif n_hierarchy == 3:
        # n_ids = int(np.cbrt(n_items))
        f_n_ids = np.cbrt(n_items)
        n_ids = int(np.ceil(np.cbrt(n_items)))
        n_ids_inner = int(np.ceil(np.sqrt(n_items / n_ids)))
        # f_n_ids = np.cbrt(n_items)

        id_outer_vecs = rng.normal(size=(n_ids, dim))
        id_inner_vecs = rng.normal(size=(n_ids_inner, dim))
        for i in range(n_ids):
            id_outer_vecs[i, :] = id_outer_vecs[i, :] / np.linalg.norm(
                id_outer_vecs[i, :])
            # for j in range(n_ids):
            #     id_inner_vecs[i*n_ids+j, :] = id_inner_vecs[i*n_ids+j, :] / np.linalg.norm(id_inner_vecs[i*n_ids+j, :])
        for i in range(n_ids_inner):
            id_inner_vecs[i, :] = id_inner_vecs[i, :] / np.linalg.norm(
                id_inner_vecs[i, :])

        # items to be included in each ID vec
        item_outer_sums = np.zeros((n_ids, dim))
        # item_inner_sums = np.zeros((n_ids*n_ids, dim))
        item_inner_sums = np.zeros((n_ids_inner, dim))
        item_loc_outer_sums = np.zeros((n_ids, dim))
        # item_loc_inner_sums = np.zeros((n_ids*n_ids, dim))
        item_loc_inner_sums = np.zeros((n_ids_inner, dim))
        for i in range(n_items):

            id_outer_ind = min(int(i / (f_n_ids * f_n_ids)), n_ids - 1)
            id_inner_ind = min(int(i / f_n_ids), n_ids_inner - 1)

            item_outer_sums[id_outer_ind, :] += item_vecs[i, :]
            item_inner_sums[id_inner_ind, :] += item_vecs[i, :]

            item_loc_outer_sums[id_outer_ind, :] += (
                spa.SemanticPointer(data=item_vecs[i, :]) *
                encode_point(locations[i, 0], locations[i, 1], X, Y)).v
            item_loc_inner_sums[id_inner_ind, :] += (
                spa.SemanticPointer(data=item_vecs[i, :]) *
                encode_point(locations[i, 0], locations[i, 1], X, Y)).v

        # Encode id_vecs into memory, each id is bound to something that has similarity to all items in the ID's map
        mem_outer = np.zeros((dim, ))
        mem_inner = np.zeros((
            n_ids,
            dim,
        ))
        for i in range(n_ids):
            # normalize previous memories
            item_outer_sums[i, :] = item_outer_sums[i, :] / np.linalg.norm(
                item_outer_sums[i, :])
            item_loc_outer_sums[i, :] = item_loc_outer_sums[
                i, :] / np.linalg.norm(item_loc_outer_sums[i, :])

            mem_outer += (spa.SemanticPointer(data=id_outer_vecs[i, :]) *
                          spa.SemanticPointer(data=item_outer_sums[i, :])).v

        for j in range(n_ids_inner):
            # normalize previous memories
            item_inner_sums[j, :] = item_inner_sums[j, :] / np.linalg.norm(
                item_inner_sums[j, :])
            item_loc_inner_sums[j, :] = item_loc_inner_sums[
                j, :] / np.linalg.norm(item_loc_inner_sums[j, :])

            i = min(int(j / n_ids), n_ids - 1)

            mem_inner[i, :] += (
                spa.SemanticPointer(data=id_inner_vecs[j, :]) *
                spa.SemanticPointer(data=item_inner_sums[j, :])).v

            mem_inner[i, :] /= np.linalg.norm(mem_inner[i, :])
        mem_outer /= np.linalg.norm(mem_outer)

        mem_outer_sp = spa.SemanticPointer(data=mem_outer)

        estims = np.zeros((
            n_items,
            dim,
        ))
        sims = np.zeros((n_items, ))

        if neural:
            # time for each item, in seconds
            time_per_item = 1.0
            model = nengo.Network(seed=seed)
            with model:
                inp_node = nengo.Node('?', size_in=0, size_out=dim)

                estim_outer_id = nengo.Ensemble(dimension=dim,
                                                n_neurons=dim *
                                                neurons_per_dim)

                out_node = nengo.Node(size_in=dim, size_out=0)

                p_out = nengo.Probe(out_node, synapse=0.01)

            sim = nengo.Simulator(model)
            sim.run(n_items * time_per_item)
        else:
            # non-neural version

            # retrieve items
            for i in range(n_items):
                # noisy outer ID for the map with this item
                estim_outer_id = (mem_outer_sp *
                                  ~spa.SemanticPointer(data=item_vecs[i, :])).v

                # get closest clean match
                id_sims = np.zeros((n_ids))
                for j in range(n_ids):
                    id_sims[j] = np.dot(estim_outer_id, id_outer_vecs[j, :])

                best_ind = np.argmax(id_sims)

                # noisy inner ID for the map with this item
                estim_inner_id = (
                    spa.SemanticPointer(data=mem_inner[best_ind, :]) *
                    ~spa.SemanticPointer(data=item_vecs[i, :])).v

                # get closest clean match
                id_sims = np.zeros((n_ids_inner))
                for j in range(n_ids_inner):
                    id_sims[j] = np.dot(estim_inner_id, id_inner_vecs[j, :])

                best_ind = np.argmax(id_sims)

                # item_loc_sums comes from the associative mapping from clean_id

                estims[i, :] = (spa.SemanticPointer(
                    data=item_loc_inner_sums[best_ind, :]) *
                                ~spa.SemanticPointer(data=item_vecs[i, :])).v

                sims[i] = np.dot(
                    estims[i, :],
                    encode_point(locations[i, 0], locations[i, 1], X, Y).v)

        pred_locs = ssp_to_loc_v(estims, hmv, xs, ys)

        errors = np.linalg.norm(pred_locs - locations, axis=1)

        accuracy = len(np.where(errors < thresh)[0]) / n_items

        rmse = np.sqrt(np.mean(errors**2))

        sim = np.mean(sims)
    else:
        # 4 split hierarchy

        vocab = spa.Vocabulary(dimensions=dim,
                               pointer_gen=np.random.RandomState(seed=seed))
        filler_id_keys = []
        filler_keys = []
        mapping = {}

        items_left = n_items
        n_levels = 0
        while items_left > 1:
            n_levels += 1
            items_left /= 4

        print(n_levels)

        # Location Values, labelled SSP
        for i in range(n_items):
            # vocab.populate('Item{}'.format(i))
            vocab.add('Loc{}'.format(i),
                      encode_point(locations[i, 0], locations[i, 1], X, Y).v)

        # level IDs, e.g. CITY, PROVINCE, COUNTRY
        for i in range(n_levels):
            vocab.populate('LevelSlot{}.unitary()'.format(i))
            # sp = spa.SemanticPointer()

        # Item IDs, e.g. Waterloo_ID
        for i in range(n_items):
            vocab.populate('ItemID{}.unitary()'.format(i))

        # level labels (fillers for level ID slots), e.g. Waterloo_ID, Ontario_ID, Canada_ID
        for i in range(n_levels):
            for j in range(int(n_items / (4**(n_levels - i - 1)))):
                vocab.populate('LevelFillerID{}_{}.unitary()'.format(i, j))
                # filler_id_keys.append('LevelFillerID{}_{}'.format(i, j))
                # filler_keys.append('LevelFiller{}_{}'.format(i, j))
                # mapping['LevelFillerID{}_{}'.format(i, j)] = 'LevelFiller{}_{}'.format(i, j)

        # Second last level with item*location pairs
        for i in range(int(n_items / 4)):
            id_str = []
            for k in range(n_levels - 1):
                id_str.append('LevelSlot{} * LevelFillerID{}_{}'.format(
                    k, k, int(i * 4 / (4**(n_levels - k - 1)))))

            data_str = []
            for j in range(4):
                ind = i * 4 + j
                data_str.append('ItemID{}*Loc{}'.format(ind, ind))
                vocab.populate('Item{} = ({}).normalized()'.format(
                    # i, ' + '.join(id_str + ['LevelSlot{} * LevelFillerID{}_{}'.format(n_levels - 2, n_levels - 2, j)])
                    ind,
                    ' + '.join(id_str + [
                        'LevelSlot{} * LevelFillerID{}_{}'.format(
                            n_levels - 1, n_levels - 1, j)
                    ])))

            # vocab.populate('LevelFiller{}_{} = {}'.format(n_levels - 1, i, ' + '.join(data_str)))
            vocab.populate('LevelFiller{}_{} = ({}).normalized()'.format(
                n_levels - 2, i, ' + '.join(data_str)))

            # only appending the ones used
            filler_id_keys.append('LevelFillerID{}_{}'.format(n_levels - 2, i))
            filler_keys.append('LevelFiller{}_{}'.format(n_levels - 2, i))
            mapping['LevelFillerID{}_{}'.format(
                n_levels - 2, i)] = 'LevelFiller{}_{}'.format(n_levels - 2, i)

        print(sorted(list(vocab.keys())))

        # Given each ItemID, calculate the corresponding Loc
        # Can map from ItemID{X} -> Item{X}
        # Query based on second last levelID to get the appropriate LevelFillerID
        # map from LevelFillerID -> LevelFiller
        # do the query LevelFiller *~ ItemID{X} to get Loc{X}

        possible_level_filler_id_vecs = np.zeros((int(n_items / 4), dim))
        for i in range(int(n_items / 4)):
            possible_level_filler_id_vecs[i] = vocab[
                'LevelFillerID{}_{}'.format(n_levels - 2, i)].v

        estims = np.zeros((
            n_items,
            dim,
        ))
        sims = np.zeros((n_items, ))

        if neural:
            # save time for very large numbers of items
            n_exp_items = min(n_items, max_items)
            estims = np.zeros((
                n_exp_items,
                dim,
            ))
            sims = np.zeros((n_exp_items, ))

            filler_id_vocab = vocab.create_subset(keys=filler_id_keys)
            filler_vocab = vocab.create_subset(keys=filler_keys)
            filler_all_vocab = vocab.create_subset(keys=filler_keys +
                                                   filler_id_keys)

            model = nengo.Network(seed=seed)
            with model:
                # The changing item query. Full expanded item, not just ID
                item_input_node = nengo.Node(lambda t: vocab['Item{}'.format(
                    int(np.floor(t)) % n_items)].v,
                                             size_in=0,
                                             size_out=dim)
                # item_input_node = spa.Transcode(lambda t: 'Item{}'.format(int(np.floor(t))), output_vocab=vocab)

                # The ID for the changing item query
                item_id_input_node = nengo.Node(lambda t: vocab[
                    'ItemID{}'.format(int(np.floor(t)) % n_items)].v,
                                                size_in=0,
                                                size_out=dim)
                # item_id_input_node = spa.Transcode(lambda t: 'ItemID{}'.format(int(np.floor(t))), output_vocab=vocab)

                # Fixed memory based on the level slot to access
                level_slot_input_node = nengo.Node(
                    lambda t: vocab['LevelSlot{}'.format(n_levels - 2)].v,
                    size_in=0,
                    size_out=dim)

                model.cconv_noisy_level_filler = nengo.networks.CircularConvolution(
                    n_neurons=neurons_per_dim * 2,
                    dimensions=dim,
                    invert_b=True)

                nengo.Connection(item_input_node,
                                 model.cconv_noisy_level_filler.input_a)
                nengo.Connection(level_slot_input_node,
                                 model.cconv_noisy_level_filler.input_b)

                # Note: this is set up as heteroassociative between ID and the content (should clean up as well)
                model.noisy_level_filler_id_cleanup = spa.ThresholdingAssocMem(
                    threshold=0.4,
                    input_vocab=filler_id_vocab,
                    output_vocab=filler_vocab,
                    # mapping=vocab.keys(),
                    mapping=mapping,
                    function=lambda x: x > 0.)

                nengo.Connection(model.cconv_noisy_level_filler.output,
                                 model.noisy_level_filler_id_cleanup.input)

                model.cconv_location = nengo.networks.CircularConvolution(
                    n_neurons=neurons_per_dim * 2,
                    dimensions=dim,
                    invert_b=True)

                nengo.Connection(model.noisy_level_filler_id_cleanup.output,
                                 model.cconv_location.input_a)
                nengo.Connection(item_id_input_node,
                                 model.cconv_location.input_b)

                out_node = nengo.Node(size_in=dim, size_out=0)

                nengo.Connection(model.cconv_location.output, out_node)

                p_out = nengo.Probe(out_node, synapse=0.01)

            sim = nengo.Simulator(model)
            sim.run(n_exp_items * time_per_item)

            output_data = sim.data[p_out]
            timesteps_per_item = int(time_per_item / 0.001)

            # timestep offset to cancel transients
            offset = 100
            for i in range(n_exp_items):
                estims[i, :] = output_data[i * timesteps_per_item +
                                           offset:(i + 1) *
                                           timesteps_per_item, :].mean(axis=0)
                sims[i] = np.dot(
                    estims[i, :],
                    encode_point(locations[i, 0], locations[i, 1], X, Y).v)

            pred_locs = ssp_to_loc_v(estims, hmv, xs, ys)

            errors = np.linalg.norm(pred_locs - locations[:n_exp_items, :],
                                    axis=1)

            accuracy = len(np.where(errors < thresh)[0]) / n_items

            rmse = np.sqrt(np.mean(errors**2))

            sim = np.mean(sims)
        else:
            # non-neural version

            # retrieve items
            for i in range(n_items):
                noisy_level_filler_id = vocab['Item{}'.format(
                    i)] * ~vocab['LevelSlot{}'.format(n_levels - 2)]
                # cleanup filler id
                n_fillers = int(n_items / 4)
                sim = np.zeros((n_fillers, ))
                for j in range(n_fillers):
                    sim[j] = np.dot(noisy_level_filler_id.v,
                                    possible_level_filler_id_vecs[j, :])

                filler_id_ind = np.argmax(sim)

                # query the appropriate filler
                loc_estim = vocab['LevelFiller{}_{}'.format(
                    n_levels - 2,
                    filler_id_ind)] * ~vocab['ItemID{}'.format(i)]

                estims[i, :] = loc_estim.v

                sims[i] = np.dot(
                    estims[i, :],
                    encode_point(locations[i, 0], locations[i, 1], X, Y).v)

            pred_locs = ssp_to_loc_v(estims, hmv, xs, ys)

            errors = np.linalg.norm(pred_locs - locations, axis=1)

            accuracy = len(np.where(errors < thresh)[0]) / n_items

            rmse = np.sqrt(np.mean(errors**2))

            sim = np.mean(sims)

    return rmse, accuracy, sim
示例#3
0
    mdRULE = spa.State(vocab, label='mdRULE')
    ppc = spa.State(vocab, feedback=0.9, label='ppc', feedback_synapse=0.25)
    errorPPC = spa.State(vocab, feedback=0.05, label='errPPC')

    # define inputs
    stim_cue = spa.Transcode(function=exp.presentCues,
                             output_vocab=vocab,
                             label='stim Cue')
    stim_target = spa.Transcode(function=exp.presentTargets,
                                output_vocab=vocab,
                                label='stim Target')

    # associative memory CUE -> RULE
    pfcRULEasso = spa.ThresholdingAssocMem(0.3,
                                           input_vocab=vocab,
                                           mapping=assoRule,
                                           function=lambda x: 1
                                           if x > 0.1 else 0,
                                           label='pfcRULEasso')
    stim_cue >> pfcRULEasso
    pfcRULEasso >> pfcRULEmemo

    # connections
    stim_cue >> ppc
    stim_cue >> pfcCUE

    motorClean = spa.WTAAssocMem(threshold=0.1,
                                 input_vocab=vocab,
                                 output_vocab=vocab,
                                 mapping=movesMap,
                                 function=lambda x: 1 if x > 0.1 else 0,
                                 label='motorClean')
示例#4
0
    # model.cconv_noisy_level_filler = nengo.networks.CircularConvolution(
    #     n_neurons=neurons_per_dim * 2, dimensions=dim, invert_b=True
    # )
    model.cconv_noisy_level_filler = spa.networks.CircularConvolution(
        n_neurons=neurons_per_dim * 2, dimensions=dim, invert_b=True)

    nengo.Connection(item_input_node, model.cconv_noisy_level_filler.input_a)
    nengo.Connection(level_slot_input_node,
                     model.cconv_noisy_level_filler.input_b)

    # Note: this is set up as heteroassociative between ID and the content (should clean up as well)
    model.noisy_level_filler_id_cleanup = spa.ThresholdingAssocMem(
        # threshold=0.7,
        threshold=0.4,
        input_vocab=filler_id_vocab,
        output_vocab=filler_vocab,
        # mapping=vocab.keys(),
        mapping=mapping,
        function=lambda x: x > 0.)

    nengo.Connection(model.cconv_noisy_level_filler.output,
                     model.noisy_level_filler_id_cleanup.input)

    # model.cconv_location = nengo.networks.CircularConvolution(
    #     n_neurons=neurons_per_dim * 2, dimensions=dim, invert_b=True
    # )
    model.cconv_location = spa.networks.CircularConvolution(
        n_neurons=neurons_per_dim * 2, dimensions=dim, invert_b=True)

    nengo.Connection(model.noisy_level_filler_id_cleanup.output,
                     model.cconv_location.input_a)
    vocab = pfc.vocab
    vocab.add('RULE1', vocab.parse('CUE_A+CUE_C'))
    vocab.add('RULE2', vocab.parse('CUE_B+CUE_D'))
    # vocab.add('CONTEXT1', vocab.parse('CUE_A+CUE_B'))
    # vocab.add('CONTEXT2', vocab.parse('CUE_C+CUE_D'))

    vocab2 = contextEncoder.vocab
    vocab2.add('CONTEXT1', vocab2.parse('CUE_A+CUE_B'))
    vocab2.add('CONTEXT2', vocab2.parse('CUE_C+CUE_D'))

    cues >> pfc
    cues >> contextEncoder

    with spa.ActionSelection():
        spa.ifmax(0.5, s.X * 0 >> pfc)
        spa.ifmax(
            0.8 * spa.dot(pfc, s.RULE1) +
            0.8 * spa.dot(targets, s.VIS * (s.RIGHT + s.LEFT)),
            targets * ~s.VIS >> motor)
        spa.ifmax(
            0.8 * spa.dot(pfc, s.RULE2) +
            0.8 * spa.dot(targets, s.AUD * (s.RIGHT + s.LEFT)),
            targets * ~s.AUD >> motor)

    md = spa.ThresholdingAssocMem(threshold=0.5,
                                  input_vocab=pfc.vocab,
                                  label='MD')
    pfc >> md
    md * 0.8 >> pfc