示例#1
0
 def get_annotations(
         self, mutated_peptide_mhci: PredictedEpitope, mutated_peptide_mhcii: PredictedEpitope) -> List[Annotation]:
     """
     returns IEDB immunogenicity for best predicted MHC I (based on affinity) and MHC II (based on affinity) epitopes
     """
     iedb = None
     iedb_mhcii = None
     if mutated_peptide_mhci and mutated_peptide_mhci.peptide:
         iedb = self.calculate_iedb_immunogenicity(
                     peptide=mutated_peptide_mhci.peptide,
                     mhc_allele=mutated_peptide_mhci.hla,
                     mhc_score=mutated_peptide_mhci.affinity_score,
                 )
     if mutated_peptide_mhcii and mutated_peptide_mhcii.peptide:
         iedb_mhcii = self.calculate_iedb_immunogenicity(
             peptide=mutated_peptide_mhcii.peptide,
             mhc_allele=mutated_peptide_mhcii.hla,
             mhc_score=mutated_peptide_mhcii.affinity_score,
         )
     annotations = [
         AnnotationFactory.build_annotation(
             value=iedb,
             name="IEDB_Immunogenicity_MHCI",
         ),
         AnnotationFactory.build_annotation(
             name="IEDB_Immunogenicity_MHCII",
             value=iedb_mhcii
         )
     ]
     return annotations
示例#2
0
 def get_annotations(self) -> List[Annotation]:
     return [
         AnnotationFactory.build_annotation(value=self.total_binding_score,
                                            name="vaxrank_binding_score"),
         AnnotationFactory.build_annotation(value=self.ranking_score,
                                            name="vaxrank_total_score"),
     ]
示例#3
0
 def get_annotations(
         self, mutated_peptide_mhci: PredictedEpitope,
         mutated_peptide_mhcii: PredictedEpitope) -> List[Annotation]:
     """
     returns dissimilarity for MHC I (affinity) MHC II (affinity)
     """
     dissimilarity_mhci = None
     dissimilarity_mhcii = None
     if mutated_peptide_mhci and mutated_peptide_mhci.peptide:
         dissimilarity_mhci = self.calculate_dissimilarity(
             mutated_peptide=mutated_peptide_mhci.peptide,
             mhc_affinity=mutated_peptide_mhci.affinity_score)
     if mutated_peptide_mhcii and mutated_peptide_mhcii.peptide:
         dissimilarity_mhcii = self.calculate_dissimilarity(
             mutated_peptide=mutated_peptide_mhcii.peptide,
             mhc_affinity=mutated_peptide_mhcii.affinity_score)
     annotations = [
         AnnotationFactory.build_annotation(
             value=dissimilarity_mhci,
             name="Dissimilarity_MHCI",
         ),
         AnnotationFactory.build_annotation(
             value=dissimilarity_mhcii,
             name="Dissimilarity_MHCII",
         )
     ]
     return annotations
示例#4
0
    def get_annotations(self, mutated_peptide_mhci: PredictedEpitope,
                        mutated_peptide_mhcii: PredictedEpitope, amplitude,
                        mutation_in_anchor) -> List[Annotation]:
        pathogen_similarity_9mer = None
        pathogen_similarity_mhcii = None
        recognition_potential = None
        if mutated_peptide_mhci and mutated_peptide_mhci.peptide:
            pathogen_similarity_9mer = self.get_pathogen_similarity(
                peptide=mutated_peptide_mhci.peptide)
            if pathogen_similarity_9mer is not None:
                recognition_potential = self.calculate_recognition_potential(
                    amplitude=amplitude,
                    pathogen_similarity=pathogen_similarity_9mer,
                    mutation_in_anchor=mutation_in_anchor,
                    mhc_affinity_mut=mutated_peptide_mhci.affinity_score,
                )
        if mutated_peptide_mhcii and mutated_peptide_mhcii.peptide:
            pathogen_similarity_mhcii = self.get_pathogen_similarity(
                peptide=mutated_peptide_mhcii.peptide)

        annotations = [
            AnnotationFactory.build_annotation(
                name="Pathogensimiliarity_MHCI_9mer",
                value=pathogen_similarity_9mer,
            ),
            AnnotationFactory.build_annotation(
                name="Recognition_Potential_MHCI_9mer",
                value=recognition_potential),
            AnnotationFactory.build_annotation(
                name="Pathogensimiliarity_MHCII",
                value=pathogen_similarity_mhcii),
        ]
        return annotations
示例#5
0
 def _get_positions_and_mutation_in_anchor(self, mutation):
     """
     returns if mutation is in anchor position for best affinity epitope over all lengths and best 9mer affinity
     """
     position_9mer = None
     mutation_in_anchor_9mer = None
     if self.best_ninemer_epitope_by_affinity.peptide and mutation.wild_type_xmer:
         position_9mer = EpitopeHelper.position_of_mutation_epitope(
             wild_type=self.best_ninemer_wt_epitope_by_affinity.peptide,
             mutation=self.best_ninemer_epitope_by_affinity.peptide,
         )
         mutation_in_anchor_9mer = EpitopeHelper.position_in_anchor_position(
             position_mhci=position_9mer,
             peptide_length=len(
                 self.best_ninemer_epitope_by_affinity.peptide),
         )
     annotations = [
         AnnotationFactory.build_annotation(
             value=position_9mer,
             name="Best_affinity_MHCI_9mer_position_mutation"),
         AnnotationFactory.build_annotation(
             value=mutation_in_anchor_9mer,
             name="Best_affinity_MHCI_9mer_anchor_mutated",
         ),
     ]
     return annotations
 def test_booleans(self):
     self.assertEqual(
         "1",
         AnnotationFactory.build_annotation("test", True).value)
     self.assertEqual(
         "0",
         AnnotationFactory.build_annotation("test", False).value)
示例#7
0
 def get_annotation(
         self, mutated_peptide_mhci: PredictedEpitope,
         mutated_peptide_mhcii: PredictedEpitope) -> List[Annotation]:
     """
     wrapper function for HEX (Homology evaluation of Xenopeptides) (Chiaro et al., 2021)
     """
     # TODO: add annotation of b score when re-implemented in python. The annotation is too slow for bigger datasets
     hex_aln_score_mhci = None
     hex_aln_score_mhcii = None
     # hex_b_score = None
     if mutated_peptide_mhci and mutated_peptide_mhci.peptide:
         # hex_aln_score, hex_b_score = self.apply_hex(netmhcpan.best_epitope_by_affinity.peptide).split(" ")
         hex_aln_score_mhci = self.apply_hex(mutated_peptide_mhci.peptide)
     if mutated_peptide_mhcii and mutated_peptide_mhcii.peptide:
         hex_aln_score_mhcii = self.apply_hex(mutated_peptide_mhcii.peptide)
     annotations = [
         AnnotationFactory.build_annotation(
             value=hex_aln_score_mhci, name="Hex_alignment_score_MHCI"),
         AnnotationFactory.build_annotation(
             value=hex_aln_score_mhcii, name="Hex_alignment_score_MHCII")
         # AnnotationFactory.build_annotation(
         #   value=hex_b_score, name="hex_B_score"
         #)
     ]
     return annotations
 def test_strings(self):
     # TODO: I am wondering if we should transform this to NA. Franziska what do you think?
     self.assertEqual("",
                      AnnotationFactory.build_annotation("test", "").value)
     self.assertEqual(
         "blabla",
         AnnotationFactory.build_annotation("test", "blabla").value)
示例#9
0
    def get_annotations(self, mutated_peptide_mhci: PredictedEpitope,
                        amplitude: Amplitude) -> List[Annotation]:

        bdg_cutoff_classical_mhci = 50
        bdg_cutoff_alternative_mhci = 5000
        amplitude_cutoff_mhci = 10

        cdn = None
        adn = None
        if mutated_peptide_mhci.peptide:
            cdn = self.classify_adn_cdn(
                score_mutation=mutated_peptide_mhci.affinity_score,
                amplitude=amplitude.amplitude_mhci_affinity,
                bdg_cutoff_classical=bdg_cutoff_classical_mhci,
                bdg_cutoff_alternative=bdg_cutoff_alternative_mhci,
                amplitude_cutoff=amplitude_cutoff_mhci,
                category="CDN",
            )
            adn = self.classify_adn_cdn(
                score_mutation=mutated_peptide_mhci.affinity_score,
                amplitude=amplitude.amplitude_mhci_affinity,
                bdg_cutoff_classical=bdg_cutoff_classical_mhci,
                bdg_cutoff_alternative=bdg_cutoff_alternative_mhci,
                amplitude_cutoff=amplitude_cutoff_mhci,
                category="ADN",
            )
        annotations = [
            AnnotationFactory.build_annotation(name="CDN_MHCI", value=cdn),
            AnnotationFactory.build_annotation(name="ADN_MHCI", value=adn),
        ]
        return annotations
示例#10
0
 def get_annotations(self) -> List[Annotation]:
     return [
         AnnotationFactory.build_annotation(
             value=self.amplitude_mhci_affinity_9mer,
             name="Amplitude_MHCI_affinity_9mer",
         ),
         AnnotationFactory.build_annotation(
             value=self.amplitude_mhci_affinity,
             name="Amplitude_MHCI_affinity"),
     ]
示例#11
0
 def test_float_values_precision_limit(self):
     self.assertEqual(
         "0.12346",
         AnnotationFactory.build_annotation("test", 0.123456789).value)
     self.assertEqual(
         "0.12346",
         AnnotationFactory.build_annotation("test", 0.1234567891234).value)
     self.assertEqual(
         "0.12345",
         AnnotationFactory.build_annotation("test", 0.12345).value)
     self.assertEqual(
         "0.123",
         AnnotationFactory.build_annotation("test", 0.123).value)
示例#12
0
 def get_annotations(self, mhc: List[Mhc2], mutation: Mutation,
                     uniprot) -> List[Annotation]:
     best_peptide, best_rank, best_allele = self.run(mhc=mhc,
                                                     mutation=mutation,
                                                     uniprot=uniprot)
     return [
         AnnotationFactory.build_annotation(
             value=best_peptide, name="MixMHC2pred_best_peptide"),
         AnnotationFactory.build_annotation(value=best_rank,
                                            name="MixMHC2pred_best_rank"),
         AnnotationFactory.build_annotation(value=best_allele,
                                            name="MixMHC2pred_best_allele"),
     ]
示例#13
0
 def get_annotations(self,
                     sequence_not_in_uniprot: bool) -> List[Annotation]:
     return [
         AnnotationFactory.build_annotation(
             name="mutation_not_found_in_proteome",
             value=sequence_not_in_uniprot)
     ]
示例#14
0
    def get_annnotations(
            self, mutated_peptide_mhci: PredictedEpitope,
            wt_peptide_mhci: PredictedEpitope,
            mutated_peptide_mhcii: PredictedEpitope,
            wt_peptide_mhcii: PredictedEpitope) -> List[Annotation]:

        improved_binding_mhci = None
        self_similarity_mhci = None
        self_similarity_mhcii = None
        if mutated_peptide_mhci and wt_peptide_mhci and \
                mutated_peptide_mhci.peptide and wt_peptide_mhci.peptide:
            improved_binding_mhci = self.is_improved_binder(
                score_mutation=mutated_peptide_mhci.rank,
                score_wild_type=wt_peptide_mhci.rank,
            )
            self_similarity_mhci = self.get_self_similarity(
                mutated_peptide=mutated_peptide_mhci.peptide,
                wt_peptide=wt_peptide_mhci.peptide,
            )
        if mutated_peptide_mhcii and wt_peptide_mhcii and \
                mutated_peptide_mhcii.peptide and wt_peptide_mhcii.peptide:
            self_similarity_mhcii = self.get_self_similarity(
                mutated_peptide=mutated_peptide_mhcii.peptide,
                wt_peptide=wt_peptide_mhcii.peptide,
            )
        annotations = [
            AnnotationFactory.build_annotation(value=improved_binding_mhci,
                                               name="Improved_Binder_MHCI"),
            AnnotationFactory.build_annotation(value=self_similarity_mhcii,
                                               name="Selfsimilarity_MHCII"),
            AnnotationFactory.build_annotation(value=self_similarity_mhci,
                                               name="Selfsimilarity_MHCI"),
            AnnotationFactory.build_annotation(
                value=self.self_similarity_of_conserved_binder_only(
                    is_improved_binder=improved_binding_mhci,
                    similarity=self_similarity_mhci,
                ),
                name="Selfsimilarity_MHCI_conserved_binder",
            ),
        ]
        return annotations
 def get_annotations(
     self,
     netmhcpan: BestAndMultipleBinder,
     mut_not_in_prot,
     expr,
     vaf_tum,
     vaf_transcr,
 ) -> List[Annotation]:
     """
     returns number of mismatches between best MHCI / MHC II epitopes (rank) and their corresponding WTs
     """
     num_mismatches_mhc1 = None
     priority_score = None
     if netmhcpan.best_wt_epitope_by_rank.peptide and netmhcpan.best_epitope_by_rank.peptide:
         num_mismatches_mhc1 = EpitopeHelper.number_of_mismatches(
             epitope_wild_type=netmhcpan.best_wt_epitope_by_rank.peptide,
             epitope_mutation=netmhcpan.best_epitope_by_rank.peptide,
         )
         priority_score = self.calc_priority_score(
                     vaf_tumor=vaf_tum,
                     vaf_rna=vaf_transcr,
                     transcript_expr=expr,
                     no_mismatch=num_mismatches_mhc1,
                     score_mut=netmhcpan.best_epitope_by_rank.rank,
                     score_wt=netmhcpan.best_wt_epitope_by_rank.rank,
                     mut_not_in_prot=mut_not_in_prot,
                 )
     annotations = [
         AnnotationFactory.build_annotation(
             value=num_mismatches_mhc1, name="Number_of_mismatches_MCHI"
         ),
         # priority score with rank score
         AnnotationFactory.build_annotation(
             value=priority_score,
             name="Priority_score",
         ),
     ]
     return annotations
示例#16
0
 def get_annotations_dai(
         self, mutated_peptide_mhci: PredictedEpitope,
         wt_peptide_mhcii: PredictedEpitope) -> List[Annotation]:
     dai = None
     if mutated_peptide_mhci.peptide and wt_peptide_mhcii.peptide:
         dai = self.dai(
             score_mutation=mutated_peptide_mhci.affinity_score,
             score_wild_type=wt_peptide_mhcii.affinity_score,
             affin_filtering=True,
         )
     annotations = [
         AnnotationFactory.build_annotation(name="DAI_MHCI_affinity",
                                            value=dai),
     ]
     return annotations
示例#17
0
    def get_annotations_mhc2(self, mutated_peptide_mhcii: PredictedEpitope,
                             amplitude: Amplitude) -> List[Annotation]:

        bdg_cutoff_classical_mhcii = 1
        bdg_cutoff_alternative_mhcii = 4
        amplitude_cutoff_mhcii = 4
        cdn = None
        adn = None
        if mutated_peptide_mhcii.peptide:
            cdn = self.classify_adn_cdn(
                score_mutation=mutated_peptide_mhcii.rank,
                amplitude=amplitude.amplitude_mhcii_rank,
                bdg_cutoff_classical=bdg_cutoff_classical_mhcii,
                bdg_cutoff_alternative=bdg_cutoff_alternative_mhcii,
                amplitude_cutoff=amplitude_cutoff_mhcii,
                category="CDN",
            )
            adn = self.classify_adn_cdn(
                score_mutation=mutated_peptide_mhcii.rank,
                amplitude=amplitude.amplitude_mhcii_rank,
                bdg_cutoff_classical=bdg_cutoff_classical_mhcii,
                bdg_cutoff_alternative=bdg_cutoff_alternative_mhcii,
                amplitude_cutoff=amplitude_cutoff_mhcii,
                category="ADN",
            )
        annotations = [
            AnnotationFactory.build_annotation(
                value=cdn,
                name="CDN_MHCII",
            ),
            AnnotationFactory.build_annotation(
                value=adn,
                name="ADN_MHCII",
            ),
        ]
        return annotations
示例#18
0
 def get_annotations(self, neoantigen: Neoantigen,
                     netmhcpan: BestAndMultipleBinder) -> List[Annotation]:
     # TODO: this is difficult to extend to more complex mutations (eg: MNVs, indels) as only considers first mutated
     #  position
     tcell_predictor_score = None
     if neoantigen.mutation.wild_type_xmer and netmhcpan.best_ninemer_epitope_by_affinity.peptide:
         mutation_position = neoantigen.mutation.position[0]
         wild_type_aminoacid = neoantigen.mutation.wild_type_xmer[
             mutation_position - 1]  # it is 1-based
         mutated_aminoacid = neoantigen.mutation.mutated_xmer[
             mutation_position - 1]
         tcell_predictor_score = self._calculate_tcell_predictor_score(
             gene=neoantigen.gene,
             substitution=wild_type_aminoacid + mutated_aminoacid,
             epitope=netmhcpan.best_ninemer_epitope_by_affinity.peptide,
             score=netmhcpan.best_ninemer_epitope_by_affinity.affinity_score
         )
     annotations = [
         AnnotationFactory.build_annotation(
             value=tcell_predictor_score,
             name="Tcell_predictor_score",
         )
     ]
     return annotations
示例#19
0
    def get_annotation(
        self, sample_id, mutated_peptide_mhci: PredictedEpitope, wt_peptide_mhci: PredictedEpitope, peptide_variant_position, mutation
    ) -> Annotation:
        """wrapper function to determine neoag immunogenicity score for a mutated peptide sequence"""

        neoag_score = None
        if mutation.wild_type_xmer and mutated_peptide_mhci.peptide and wt_peptide_mhci.peptide:
            # TODO: move this tmp file creation inside the method
            tmp_file_name = intermediate_files.create_temp_file(
                prefix="tmp_neoag_", suffix=".txt"
            )
            self._prepare_tmp_for_neoag(
                sample_id,
                mutated_peptide_mhci.peptide,
                mutated_peptide_mhci.affinity_score,
                wt_peptide_mhci.peptide,
                peptide_variant_position,
                tmp_file_name,
            )
            neoag_score = self._apply_gbm(tmp_file_name)
        annotation = AnnotationFactory.build_annotation(
            value=neoag_score, name="Neoag_immunogenicity"
        )
        return annotation
示例#20
0
 def get_annotations(self) -> List[Annotation]:
     return [
         AnnotationFactory.build_annotation(
             name="Expression_mutated_transcript", value=self.expression),
     ]
示例#21
0
 def test_integers(self):
     self.assertEqual("123",
                      AnnotationFactory.build_annotation("test", 123).value)
     self.assertEqual(
         "-123",
         AnnotationFactory.build_annotation("test", -123).value)
示例#22
0
 def test_none(self):
     self.assertEqual(
         NOT_AVAILABLE_VALUE,
         AnnotationFactory.build_annotation("test", None).value)
    def get_annotations(self) -> List[Annotation]:
        annotations = []
        if self.best_predicted_epitope_rank:
            annotations.extend([
                AnnotationFactory.build_annotation(
                    value=self.best_predicted_epitope_rank.rank,
                    name="Best_rank_MHCII_score",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_predicted_epitope_rank.peptide,
                    name="Best_rank_MHCII_score_epitope",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_predicted_epitope_rank.hla.name,
                    name="Best_rank_MHCII_score_allele",
                )
            ])
        if self.best_predicted_epitope_affinity:
            annotations.extend([
                AnnotationFactory.build_annotation(
                    value=self.best_predicted_epitope_affinity.affinity_score,
                    name="Best_affinity_MHCII_score",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_predicted_epitope_affinity.peptide,
                    name="Best_affinity_MHCII_epitope",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_predicted_epitope_affinity.hla.name,
                    name="Best_affinity_MHCII_allele",
                )
            ])
        if self.best_predicted_epitope_rank_wt:
            annotations.extend([
                AnnotationFactory.build_annotation(
                    value=self.best_predicted_epitope_rank_wt.rank,
                    name="Best_rank_MHCII_score_WT",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_predicted_epitope_rank_wt.peptide,
                    name="Best_rank_MHCII_score_epitope_WT",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_predicted_epitope_rank_wt.hla.name,
                    name="Best_rank_MHCII_score_allele_WT",
                )
            ])
        if self.best_predicted_epitope_affinity_wt:
            annotations.extend([
                AnnotationFactory.build_annotation(
                    value=self.best_predicted_epitope_affinity_wt.
                    affinity_score,
                    name="Best_affinity_MHCII_score_WT",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_predicted_epitope_affinity_wt.peptide,
                    name="Best_affinity_MHCII_epitope_WT",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_predicted_epitope_affinity_wt.hla.name,
                    name="Best_affinity_MHCII_allele_WT",
                )
            ])

        if self.organism == ORGANISM_HOMO_SAPIENS:
            annotations.extend([
                AnnotationFactory.build_annotation(value=self.phbr_ii,
                                                   name="PHBR_II")
            ])

        annotations.extend([
            # generator rate
            AnnotationFactory.build_annotation(value=self.generator_rate,
                                               name="Generator_rate_MHCII"),
            AnnotationFactory.build_annotation(
                value=self.generator_rate_cdn,
                name="Generator_rate_CDN_MHCII"),
            AnnotationFactory.build_annotation(
                value=self.generator_rate_adn,
                name="Generator_rate_ADN_MHCII"),
        ])
        return annotations
示例#24
0
    def get_annotations(self, mutation) -> List[Annotation]:
        annotations = []
        if self.best_epitope_by_rank:
            annotations.extend([
                AnnotationFactory.build_annotation(
                    value=self.best_epitope_by_rank.rank,
                    name="Best_rank_MHCI_score"),
                AnnotationFactory.build_annotation(
                    value=self.best_epitope_by_rank.peptide,
                    name="Best_rank_MHCI_score_epitope",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_epitope_by_rank.hla.name,
                    name="Best_rank_MHCI_score_allele")
            ])
        if self.best_epitope_by_affinity:
            annotations.extend([
                AnnotationFactory.build_annotation(
                    value=self.best_epitope_by_affinity.affinity_score,
                    name="Best_affinity_MHCI_score",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_epitope_by_affinity.peptide,
                    name="Best_affinity_MHCI_epitope",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_epitope_by_affinity.hla.name,
                    name="Best_affinity_MHCI_allele",
                )
            ])
        if self.best_ninemer_epitope_by_rank:
            annotations.extend([
                AnnotationFactory.build_annotation(
                    value=self.best_ninemer_epitope_by_rank.rank,
                    name="Best_rank_MHCI_9mer_score",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_ninemer_epitope_by_rank.peptide,
                    name="Best_rank_MHCI_9mer_epitope",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_ninemer_epitope_by_rank.hla.name,
                    name="Best_rank_MHCI_9mer_allele",
                )
            ])
        if self.best_ninemer_epitope_by_affinity:
            annotations.extend([
                AnnotationFactory.build_annotation(
                    value=self.best_ninemer_epitope_by_affinity.affinity_score,
                    name="Best_affinity_MHCI_9mer_score",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_ninemer_epitope_by_affinity.hla.name,
                    name="Best_affinity_MHCI_9mer_allele",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_ninemer_epitope_by_affinity.peptide,
                    name="Best_affinity_MHCI_9mer_epitope",
                )
            ])
            # wt
        if self.best_wt_epitope_by_affinity:
            annotations.extend([
                AnnotationFactory.build_annotation(
                    value=self.best_wt_epitope_by_affinity.affinity_score,
                    name="Best_affinity_MHCI_score_WT",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_wt_epitope_by_affinity.peptide,
                    name="Best_affinity_MHCI_epitope_WT",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_wt_epitope_by_affinity.hla.name,
                    name="Best_affinity_MHCI_allele_WT",
                )
            ])
        if self.best_wt_epitope_by_rank:
            annotations.extend([
                AnnotationFactory.build_annotation(
                    value=self.best_wt_epitope_by_rank.rank,
                    name="Best_rank_MHCI_score_WT"),
                AnnotationFactory.build_annotation(
                    value=self.best_wt_epitope_by_rank.peptide,
                    name="Best_rank_MHCI_score_epitope_WT",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_wt_epitope_by_rank.hla.name,
                    name="Best_rank_MHCI_score_allele_WT",
                )
            ])
        if self.best_ninemer_wt_epitope_by_rank:
            annotations.extend([
                AnnotationFactory.build_annotation(
                    value=self.best_ninemer_wt_epitope_by_rank.rank,
                    name="Best_rank_MHCI_9mer_score_WT",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_ninemer_wt_epitope_by_rank.peptide,
                    name="Best_rank_MHCI_9mer_epitope_WT",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_ninemer_wt_epitope_by_rank.hla.name,
                    name="Best_rank_MHCI_9mer_allele_WT",
                )
            ])
        if self.best_ninemer_wt_epitope_by_affinity:
            annotations.extend([
                AnnotationFactory.build_annotation(
                    value=self.best_ninemer_wt_epitope_by_affinity.
                    affinity_score,
                    name="Best_affinity_MHCI_9mer_score_WT",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_ninemer_wt_epitope_by_affinity.hla.name,
                    name="Best_affinity_MHCI_9mer_allele_WT",
                ),
                AnnotationFactory.build_annotation(
                    value=self.best_ninemer_wt_epitope_by_affinity.peptide,
                    name="Best_affinity_MHCI_9mer_epitope_WT",
                )
            ])

        if self.organism == ORGANISM_HOMO_SAPIENS:
            annotations.extend([
                AnnotationFactory.build_annotation(value=self.phbr_i,
                                                   name="PHBR_I")
            ])

        annotations.extend([
            # generator rate
            AnnotationFactory.build_annotation(value=self.generator_rate,
                                               name="Generator_rate_MHCI"),
            AnnotationFactory.build_annotation(value=self.generator_rate_cdn,
                                               name="Generator_rate_CDN_MHCI"),
            AnnotationFactory.build_annotation(value=self.generator_rate_adn,
                                               name="Generator_rate_ADN_MHCI")
        ])
        annotations.extend(
            self._get_positions_and_mutation_in_anchor(mutation))
        return annotations
示例#25
0
 def get_annotations_mhc2(self) -> List[Annotation]:
     return [
         AnnotationFactory.build_annotation(value=self.amplitude_mhcii_rank,
                                            name="Amplitude_MHCII_rank")
     ]