numpy_call_dict_mkl = { # assign "assign": _assign_right_to_left, # zero_operand ops # unary ops "neg": lambda left: math_cpu.neg(left), "abs": lambda left: np.abs(left), "sgn": lambda left: np.sign(left), "sqrt": lambda left: math_cpu.sqrt(left), "sqr": lambda left: math_cpu.square(left), "exp": lambda left: math_cpu.exp(left), "log": lambda left: math_cpu.log(left), "safelog": lambda left: math_cpu.safelog(left), "exp2": lambda left: np.exp2(left), "log2": lambda left: np.log2(left), "sig": lambda left: 1. / (1. + np.exp(-left)), "sig2": lambda left: 1. / (1. + np.exp2(-left)), "tanh":
def _assign_right_to_left(left, right): math_cpu.blas_copy(left, right) # how to overlaod numpy_call_dict? numpy_call_dict_mkl = { # assign "assign": _assign_right_to_left, # zero_operand ops # unary ops "neg": lambda left: math_cpu.neg(left), "abs": lambda left: np.abs(left), "sgn": lambda left: np.sign(left), "sqrt": lambda left: math_cpu.sqrt(left), "sqr": lambda left: math_cpu.square(left), "exp": lambda left: math_cpu.exp(left), "log": lambda left: math_cpu.log(left), "safelog": lambda left: math_cpu.safelog(left), "exp2": lambda left: np.exp2(left), "log2": lambda left: np.log2(left), "sig": lambda left: 1. / (1. + np.exp(-left)), "sig2": lambda left: 1. / (1. + np.exp2(-left)), "tanh": lambda left: np.tanh(left), "tanh2": lambda left: (np.exp2(2. * left) - 1.) / (np.exp2(2. * left) + 1.), "transpose": lambda left: np.transpose(left), "rint": lambda left: np.rint(left), # binary ops "add": lambda left, right: math_cpu.add(left, right), "sub": lambda left, right: math_cpu.sub(left, right), "mul": lambda left, right: math_cpu.mul(left, right),