# Create Neptune Callback import neptunecontrib.monitoring.skopt as skopt_utils neptune_callback = skopt_utils.NeptuneCallback() # Run the skopt minimize function with the Neptune Callback results = skopt.forest_minimize(objective, space, n_calls=25, n_random_starts=10, callback=[neptune_callback]) ## Step 4: Log best parameter configuration, best score and diagnostic plots skopt_utils.log_results(results) ## Step 5: Stop logging and Explore results in the Neptune UI # tests exp = neptune.get_experiment() neptune.stop() # tests all_logs = exp.get_logs() ## check logs correct_logs = [
# Create Neptune Callback import neptunecontrib.monitoring.skopt as skopt_utils neptune_callback = skopt_utils.NeptuneCallback() # Run the skopt minimize function with the Neptune Callback results = skopt.forest_minimize(objective, space, n_calls=25, n_random_starts=10, callback=[neptune_callback]) ## Step 3: Log best parameter configuration, best score and diagnostic plots skopt_utils.log_results(results) ## Step 4: Stop logging and Explore results in the Neptune UI neptune.stop() # Logging BayesSearchCV ## Prepare the data and initialize BayesSearchCV optimizer from skopt import BayesSearchCV from skopt.space import Real, Categorical, Integer from sklearn.datasets import load_iris from sklearn.svm import SVC from sklearn.model_selection import train_test_split