def main(cfg: DictConfig): # Device on which to run. if torch.cuda.is_available(): device = "cuda" else: warnings.warn( "Please note that although executing on CPU is supported," + "the testing is unlikely to finish in reasonable time.") device = "cpu" # Initialize the Radiance Field model. model = RadianceFieldRenderer( image_size=cfg.data.image_size, n_pts_per_ray=cfg.raysampler.n_pts_per_ray, n_pts_per_ray_fine=cfg.raysampler.n_pts_per_ray, n_rays_per_image=cfg.raysampler.n_rays_per_image, min_depth=cfg.raysampler.min_depth, max_depth=cfg.raysampler.max_depth, stratified=cfg.raysampler.stratified, stratified_test=cfg.raysampler.stratified_test, chunk_size_test=cfg.raysampler.chunk_size_test, n_harmonic_functions_xyz=cfg.implicit_function. n_harmonic_functions_xyz, n_harmonic_functions_dir=cfg.implicit_function. n_harmonic_functions_dir, n_hidden_neurons_xyz=cfg.implicit_function.n_hidden_neurons_xyz, n_hidden_neurons_dir=cfg.implicit_function.n_hidden_neurons_dir, n_layers_xyz=cfg.implicit_function.n_layers_xyz, density_noise_std=cfg.implicit_function.density_noise_std, ) # Move the model to the relevant device. model.to(device) # Resume from the checkpoint. checkpoint_path = os.path.join(hydra.utils.get_original_cwd(), cfg.checkpoint_path) if not os.path.isfile(checkpoint_path): raise ValueError(f"Model checkpoint {checkpoint_path} does not exist!") print(f"Loading checkpoint {checkpoint_path}.") loaded_data = torch.load(checkpoint_path) # Do not load the cached xy grid. # - this allows setting an arbitrary evaluation image size. state_dict = { k: v for k, v in loaded_data["model"].items() if "_grid_raysampler._xy_grid" not in k } model.load_state_dict(state_dict, strict=False) # Load the test data. if cfg.test.mode == "evaluation": _, _, test_dataset = get_nerf_datasets( dataset_name=cfg.data.dataset_name, image_size=cfg.data.image_size, ) elif cfg.test.mode == "export_video": train_dataset, _, _ = get_nerf_datasets( dataset_name=cfg.data.dataset_name, image_size=cfg.data.image_size, ) test_dataset = generate_eval_video_cameras( train_dataset, trajectory_type=cfg.test.trajectory_type, up=cfg.test.up, scene_center=cfg.test.scene_center, n_eval_cams=cfg.test.n_frames, trajectory_scale=cfg.test.trajectory_scale, ) # store the video in directory (checkpoint_file - extension + '_video') export_dir = os.path.splitext(checkpoint_path)[0] + "_video" os.makedirs(export_dir, exist_ok=True) else: raise ValueError(f"Unknown test mode {cfg.test_mode}.") # Init the test dataloader. test_dataloader = torch.utils.data.DataLoader( test_dataset, batch_size=1, shuffle=False, num_workers=0, collate_fn=trivial_collate, ) if cfg.test.mode == "evaluation": # Init the test stats object. eval_stats = [ "mse_coarse", "mse_fine", "psnr_coarse", "psnr_fine", "sec/it" ] stats = Stats(eval_stats) stats.new_epoch() elif cfg.test.mode == "export_video": # Init the frame buffer. frame_paths = [] # Set the model to the eval mode. model.eval() # Run the main testing loop. for batch_idx, test_batch in enumerate(test_dataloader): test_image, test_camera, camera_idx = test_batch[0].values() if test_image is not None: test_image = test_image.to(device) test_camera = test_camera.to(device) # Activate eval mode of the model (lets us do a full rendering pass). model.eval() with torch.no_grad(): test_nerf_out, test_metrics = model( None, # we do not use pre-cached cameras test_camera, test_image, ) if cfg.test.mode == "evaluation": # Update stats with the validation metrics. stats.update(test_metrics, stat_set="test") stats.print(stat_set="test") elif cfg.test.mode == "export_video": # Store the video frame. frame = test_nerf_out["rgb_fine"][0].detach().cpu() frame_path = os.path.join(export_dir, f"frame_{batch_idx:05d}.png") print(f"Writing {frame_path}.") Image.fromarray( (frame.numpy() * 255.0).astype(np.uint8)).save(frame_path) frame_paths.append(frame_path) if cfg.test.mode == "evaluation": print(f"Final evaluation metrics on '{cfg.data.dataset_name}':") for stat in eval_stats: stat_value = stats.stats["test"][stat].get_epoch_averages()[0] print(f"{stat:15s}: {stat_value:1.4f}") elif cfg.test.mode == "export_video": # Convert the exported frames to a video. video_path = os.path.join(export_dir, "video.mp4") ffmpeg_bin = "ffmpeg" frame_regexp = os.path.join(export_dir, "frame_%05d.png") ffmcmd = ( "%s -r %d -i %s -vcodec h264 -f mp4 -y -b 2000k -pix_fmt yuv420p %s" % (ffmpeg_bin, cfg.test.fps, frame_regexp, video_path)) ret = os.system(ffmcmd) if ret != 0: raise RuntimeError("ffmpeg failed!")
def main(cfg: DictConfig): # Set the relevant seeds for reproducibility. np.random.seed(cfg.seed) torch.manual_seed(cfg.seed) # Device on which to run. if torch.cuda.is_available(): device = "cuda" else: warnings.warn( "Please note that although executing on CPU is supported," + "the training is unlikely to finish in reasonable time.") device = "cpu" # Initialize the Radiance Field model. model = RadianceFieldRenderer( image_size=cfg.data.image_size, n_pts_per_ray=cfg.raysampler.n_pts_per_ray, n_pts_per_ray_fine=cfg.raysampler.n_pts_per_ray, n_rays_per_image=cfg.raysampler.n_rays_per_image, min_depth=cfg.raysampler.min_depth, max_depth=cfg.raysampler.max_depth, stratified=cfg.raysampler.stratified, stratified_test=cfg.raysampler.stratified_test, chunk_size_test=cfg.raysampler.chunk_size_test, n_harmonic_functions_xyz=cfg.implicit_function. n_harmonic_functions_xyz, n_harmonic_functions_dir=cfg.implicit_function. n_harmonic_functions_dir, n_hidden_neurons_xyz=cfg.implicit_function.n_hidden_neurons_xyz, n_hidden_neurons_dir=cfg.implicit_function.n_hidden_neurons_dir, n_layers_xyz=cfg.implicit_function.n_layers_xyz, density_noise_std=cfg.implicit_function.density_noise_std, ) # Move the model to the relevant device. model.to(device) # Init stats to None before loading. stats = None optimizer_state_dict = None start_epoch = 0 checkpoint_path = os.path.join(hydra.utils.get_original_cwd(), cfg.checkpoint_path) if len(cfg.checkpoint_path) > 0: # Make the root of the experiment directory. checkpoint_dir = os.path.split(checkpoint_path)[0] os.makedirs(checkpoint_dir, exist_ok=True) # Resume training if requested. if cfg.resume and os.path.isfile(checkpoint_path): print(f"Resuming from checkpoint {checkpoint_path}.") loaded_data = torch.load(checkpoint_path) model.load_state_dict(loaded_data["model"]) stats = pickle.loads(loaded_data["stats"]) print(f" => resuming from epoch {stats.epoch}.") optimizer_state_dict = loaded_data["optimizer"] start_epoch = stats.epoch # Initialize the optimizer. optimizer = torch.optim.Adam( model.parameters(), lr=cfg.optimizer.lr, ) # Load the optimizer state dict in case we are resuming. if optimizer_state_dict is not None: optimizer.load_state_dict(optimizer_state_dict) optimizer.last_epoch = start_epoch # Init the stats object. if stats is None: stats = Stats([ "loss", "mse_coarse", "mse_fine", "psnr_coarse", "psnr_fine", "sec/it" ], ) # Learning rate scheduler setup. # Following the original code, we use exponential decay of the # learning rate: current_lr = base_lr * gamma ** (epoch / step_size) def lr_lambda(epoch): return cfg.optimizer.lr_scheduler_gamma**( epoch / cfg.optimizer.lr_scheduler_step_size) # The learning rate scheduling is implemented with LambdaLR PyTorch scheduler. lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=start_epoch - 1, verbose=False) # Initialize the cache for storing variables needed for visualization. visuals_cache = collections.deque(maxlen=cfg.visualization.history_size) # Init the visualization visdom env. if cfg.visualization.visdom: viz = Visdom( server=cfg.visualization.visdom_server, port=cfg.visualization.visdom_port, use_incoming_socket=False, ) else: viz = None # Load the training/validation data. train_dataset, val_dataset, _ = get_nerf_datasets( dataset_name=cfg.data.dataset_name, image_size=cfg.data.image_size, ) if cfg.data.precache_rays: # Precache the projection rays. model.eval() with torch.no_grad(): for dataset in (train_dataset, val_dataset): cache_cameras = [e["camera"].to(device) for e in dataset] cache_camera_hashes = [e["camera_idx"] for e in dataset] model.precache_rays(cache_cameras, cache_camera_hashes) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=1, shuffle=True, num_workers=0, collate_fn=trivial_collate, ) # The validation dataloader is just an endless stream of random samples. val_dataloader = torch.utils.data.DataLoader( val_dataset, batch_size=1, num_workers=0, collate_fn=trivial_collate, sampler=torch.utils.data.RandomSampler( val_dataset, replacement=True, num_samples=cfg.optimizer.max_epochs, ), ) # Set the model to the training mode. model.train() # Run the main training loop. for epoch in range(start_epoch, cfg.optimizer.max_epochs): stats.new_epoch() # Init a new epoch. for iteration, batch in enumerate(train_dataloader): image, camera, camera_idx = batch[0].values() image = image.to(device) camera = camera.to(device) optimizer.zero_grad() # Run the forward pass of the model. nerf_out, metrics = model( camera_idx if cfg.data.precache_rays else None, camera, image, ) # The loss is a sum of coarse and fine MSEs loss = metrics["mse_coarse"] + metrics["mse_fine"] # Take the training step. loss.backward() optimizer.step() # Update stats with the current metrics. stats.update( { "loss": float(loss), **metrics }, stat_set="train", ) if iteration % cfg.stats_print_interval == 0: stats.print(stat_set="train") # Update the visualization cache. visuals_cache.append({ "camera": camera.cpu(), "camera_idx": camera_idx, "image": image.cpu().detach(), "rgb_fine": nerf_out["rgb_fine"].cpu().detach(), "rgb_coarse": nerf_out["rgb_coarse"].cpu().detach(), "rgb_gt": nerf_out["rgb_gt"].cpu().detach(), "coarse_ray_bundle": nerf_out["coarse_ray_bundle"], }) # Adjust the learning rate. lr_scheduler.step() # Validation if epoch % cfg.validation_epoch_interval == 0 and epoch > 0: # Sample a validation camera/image. val_batch = next(val_dataloader.__iter__()) val_image, val_camera, camera_idx = val_batch[0].values() val_image = val_image.to(device) val_camera = val_camera.to(device) # Activate eval mode of the model (lets us do a full rendering pass). model.eval() with torch.no_grad(): val_nerf_out, val_metrics = model( camera_idx if cfg.data.precache_rays else None, val_camera, val_image, ) # Update stats with the validation metrics. stats.update(val_metrics, stat_set="val") stats.print(stat_set="val") if viz is not None: # Plot that loss curves into visdom. stats.plot_stats( viz=viz, visdom_env=cfg.visualization.visdom_env, plot_file=None, ) # Visualize the intermediate results. visualize_nerf_outputs(val_nerf_out, visuals_cache, viz, cfg.visualization.visdom_env) # Set the model back to train mode. model.train() # Checkpoint. if (epoch % cfg.checkpoint_epoch_interval == 0 and len(cfg.checkpoint_path) > 0 and epoch > 0): print(f"Storing checkpoint {checkpoint_path}.") data_to_store = { "model": model.state_dict(), "optimizer": optimizer.state_dict(), "stats": pickle.dumps(stats), } torch.save(data_to_store, checkpoint_path)