def experiment(param):
    pms = param["param"]
    sche_name = param["setting_name"]
    clf = WindowMLP(**pms)
    if sche_name == "epoch":
        schedule = itertools.chain(*itertools.repeat(xrange(len(y_train)), nepoch))
    elif sche_name == "N":
        schedule = random.randint(0, len(y_train), N)
    elif sche_name == "mini_batch":
        schedule = trainig_schedule(N, len(y_train), k)

    cost = clf.train_sgd(X_train, y_train, idxiter=schedule)
    result = {"cost": cost, "name": sche_name}
    return result
示例#2
0
def experiment(param):
    pms = param["param"]
    sche_name = param["setting_name"]
    clf = WindowMLP(**pms)
    if sche_name == "epoch":
        schedule = itertools.chain(
            *itertools.repeat(xrange(len(y_train)), nepoch))
    elif sche_name == "N":
        schedule = random.randint(0, len(y_train), N)
    elif sche_name == "mini_batch":
        schedule = trainig_schedule(N, len(y_train), k)

    cost = clf.train_sgd(X_train, y_train, idxiter=schedule)
    result = {"cost": cost, "name": sche_name}
    return result
示例#3
0
def main():
    # Load the starter word vectors
    wv, word_to_num, num_to_word = ner.load_wv('data/ner/vocab.txt',
                                               'data/ner/wordVectors.txt')
    tagnames = ["O", "LOC", "MISC", "ORG", "PER"]
    num_to_tag = dict(enumerate(tagnames))
    tag_to_num = du.invert_dict(num_to_tag)

    # Set window size
    windowsize = 3

    # Load the training set
    docs = du.load_dataset('data/ner/train')
    X_train, y_train = du.docs_to_windows(docs,
                                          word_to_num,
                                          tag_to_num,
                                          wsize=windowsize)

    # Load the dev set (for tuning hyperparameters)
    docs = du.load_dataset('data/ner/dev')
    X_dev, y_dev = du.docs_to_windows(docs,
                                      word_to_num,
                                      tag_to_num,
                                      wsize=windowsize)

    # Load the test set (dummy labels only)
    docs = du.load_dataset('data/ner/test.masked')
    X_test, y_test = du.docs_to_windows(docs,
                                        word_to_num,
                                        tag_to_num,
                                        wsize=windowsize)
    clf = WindowMLP(wv,
                    windowsize=windowsize,
                    dims=[None, 100, 5],
                    reg=0.001,
                    alpha=0.01)
    train_size = X_train.shape[0]
    """
    costs = pickle.load(open("costs.dat", "rb"))
    clf = pickle.load(open("clf.dat", "rb"))
    """
    nepoch = 5
    N = nepoch * len(y_train)
    k = 5  # minibatch size
    costs = clf.train_sgd(X_train,
                          y_train,
                          idxiter=random_mini(k, N, train_size),
                          printevery=10000,
                          costevery=10000)

    pickle.dump(clf, open("clf.dat", "wb"))
    pickle.dump(costs, open("costs.dat", "wb"))
    plot_learning_curve(clf, costs)
    # Predict labels on the dev set
    yp = clf.predict(X_dev)
    # Save predictions to a file, one per line
    ner.save_predictions(yp, "dev.predicted")
    full_report(y_dev, yp, tagnames)  # full report, helpful diagnostics
    eval_performance(y_dev, yp, tagnames)  # performance: optimize this F1
    # L: V x 50
    # W[:,50:100]: 100 x 50
    responses = clf.sparams.L.dot(clf.params.W[:, 50:100].T)  # V x 100
    index = np.argsort(responses, axis=0)[::-1]

    neurons = [1, 3, 4, 6, 8]  # change this to your chosen neurons
    for i in neurons:
        print "Neuron %d" % i
        top_words = [num_to_word[k] for k in index[:10, i]]
        top_scores = [responses[k, i] for k in index[:10, i]]
        print_scores(top_scores, top_words)
示例#4
0
import data_utils.utils as du
import data_utils.ner as ner
# Load the starter word vectors
wv, word_to_num, num_to_word = ner.load_wv('data/ner/vocab.txt',
                                           'data/ner/wordVectors.txt')
tagnames = ["O", "LOC", "MISC", "ORG", "PER"]
num_to_tag = dict(enumerate(tagnames))
tag_to_num = du.invert_dict(num_to_tag)

# Set window size
windowsize = 3

# Load the training set
docs = du.load_dataset('data/ner/train')
X_train, y_train = du.docs_to_windows(docs, word_to_num, tag_to_num,
                                      wsize=windowsize)

# Load the dev set (for tuning hyperparameters)
docs = du.load_dataset('data/ner/dev')
X_dev, y_dev = du.docs_to_windows(docs, word_to_num, tag_to_num,
                                  wsize=windowsize)

# Load the test set (dummy labels only)
docs = du.load_dataset('data/ner/test.masked')
X_test, y_test = du.docs_to_windows(docs, word_to_num, tag_to_num,
                                    wsize=windowsize)
clf = WindowMLP(wv, windowsize=windowsize, dims=[None, 100, 5],
                reg=0.001, alpha=0.01)
clf.grad_check(X_train[0], y_train[0])
clf.train_sgd( X_train, y_train)
示例#5
0
文件: part1-NER.py 项目: Tang7/rnn224
# Feel free to create new cells and write new code here, including new functions (helpers and otherwise) in `nerwindow.py`. When you have a good model, follow the instructions below to make predictions on the test set.
# 
# A strong model may require 10-20 passes (or equivalent number of random samples) through the training set and could take 20 minutes or more to train - but it's also possible to be much, much faster!
# 
# Things you may want to tune:
# - `alpha` (including using an "annealing" schedule to decrease the learning rate over time)
# - training schedule and minibatch size
# - regularization strength
# - hidden layer dimension
# - width of context window

# In[120]:

#### YOUR CODE HERE ####
# Sandbox: build a good model by tuning hyperparameters
clf.train_sgd(X_train[:100000], y_train[:100000], idxiter=xrange(100000), printevery=5000, costevery=5000,)

#### END YOUR CODE ####


# In[ ]:

#### YOUR CODE HERE ####
# Sandbox: build a good model by tuning hyperparameters
from nerwindow import full_report, eval_performance

schedules = [idxiter_epoch, idxiter_N, idxiter_batches()]#last one is best, but slow. choose second
for train_idxiter in schedules:
    clf = WindowMLP(wv, windowsize=windowsize, dims=[None, 100, 5], reg=0.001, alpha=0.01)
    clf.train_sgd(X_train, y_train, idxiter=train_idxiter, printevery=250000, costevery=250000,)
    yp = clf.predict(X_dev)