def test_freq(): from nest import SetKernelStatus, Simulate, ResetKernel, raster_plot ResetKernel() SetKernelStatus({ 'total_num_virtual_procs': 2, 'print_time': True, 'resolution': 0.1}) paf = ProkhazkaAfferentFiber() sd = Create('spike_detector', params={'withgid': True, 'withtime': True}) mm = Create('') print(sd) Connect(paf.neurons, sd) Simulate(1000.) raster_plot.from_device(sd, hist=True) raster_plot.show()
def plot(self): pylab.ion() for i, sei in enumerate(self.se_integrator): pylab.figure() pylab.subplot(1, 2, 1) pylab.title('Ca') pylab.plot(self.sim_steps, self.ca_nest[0, :]) pylab.plot(self.sim_steps, self.ca_python[i]) pylab.legend(('nest', sei.__class__.__name__)) pylab.subplot(1, 2, 2) pylab.title('Synaptic Element') pylab.plot(self.sim_steps, self.se_nest[0, :]) pylab.plot(self.sim_steps, self.se_python[i]) pylab.legend(('nest', sei.__class__.__name__)) pylab.savefig('sp' + sei.__class__.__name__ + '.png') raster_plot.from_device(self.spike_detector) pylab.savefig('sp_raster_plot.png')
def get_nest_raster(self): """Return the nest_raster plot and possibly error message.""" import nest from nest import raster_plot assert self.type == 'spike_detector' raster, error_msg = None, None if 'memory' not in self._record_to: error_msg = 'Data was not saved to memory.' elif not len(nest.GetStatus(self.gid)[0]['events']['senders']): # pylint: disable=len-as-condition error_msg = 'No events were recorded.' elif len(nest.GetStatus(self.gid)[0]['events']['senders']) == 1: error_msg = 'There was only one sender' else: try: raster = raster_plot.from_device(self.gid, hist=True) except Exception as exception: # pylint: disable=broad-except error_msg = ( f'Uncaught exception when generating raster.\n' f'--> Exception message: {exception}\n' f'--> Recorder status: {nest.GetStatus(self.gid)}') return raster, error_msg
smf.write("avg seconds spent per nest.Simulate()"\ " simulation " + str(avg) + "\n") if (myP): print("avg seconds spent per nest.Simulate()"\ " simulation " + str(avg)) ##print("sum " + str(sum)) # get multimeter recordings events = nest.GetStatus(mm)[0]["events"] #t = events["times"] ### for plotting if (myPl): # spike raster plot raster_plot.from_device(sd) # multiply by 10 for actual length of time (1sim/10ms) pylab.xlim(0, len(optLengths) * 10) raster_plot.show() # 1 plot pylab.clf() pylab.subplot(211) pylab.plot(events["times"], events["primary_rate"]) pylab.plot(events["times"], events["secondary_rate"]) #pylab.axis([0, len(optLengths)*10, -200, 200]) # change y bounds z pylab.xlabel("time (ms)") pylab.ylabel("membrane potential (mV) (with electrode "\ "inaccuracy,interfence ? )") pylab.legend(("primary_rate", "secondary_rate"))
def createNestNetwork(individu,nbClusters, connectInter, connectIntra, pcExc, pcInh, nbNeuronByCluster, interRatio, plotMe=False): TIME_SIM=400.0 ResetKernel() print 'Initialisation du reseau' nbNeurones = nbClusters * nbNeuronByCluster neurones=Create("iaf_psc_delta",nbNeurones) SetDefaults("spike_detector", {"withtime":True,"withgid":True}) spikedetector=Create("spike_detector") correlator=Create("correlation_detector",params={"delta_tau":1.0,"tau_max":100.0}) print "Creation d'un individu" #individu=Ind(nbClusters, connectInter, connectIntra, pcExc, pcInh, nbNeuronByCluster, interRatio) print 'Connexion du reseau de neurones' CopyModel("static_synapse","N2N") #CopyModel("stdp_pl_synapse_hom","N2N") for nSource,voisins in individu.graph.adjacency_iter(): #print nSource, voisins for voisin,eattr in voisins.iteritems(): #print voisin, eattr poids=eattr[0]['weight'] poids=poids*20 Connect([neurones[nSource]],[neurones[voisin]],params={"weight":double(poids)},model="N2N") DRIVE=30 space= 0.9 NB_DRIVER = 20 #aleatime=random.randint(1,100) t=0.1 times=[t+space*x for x in range(DRIVE)] #times.extend([DRIVE + t+space*2*x+aleatime for x in range(DRIVE)]) spiker=Create("spike_generator",3,params={"spike_times":times}) DivergentConnect(spiker,neurones[1:NB_DRIVER]) ConvergentConnect(neurones,spikedetector) Connect([neurones[3]],correlator,params={"receptor_type":0}) Connect([neurones[3]],correlator,params={"receptor_type":1}) SetStatus(spikedetector,[{"n_events":0}]) SetStatus(correlator,[{"n_events":[0,0]}]) noisy=Create("noise_generator", params={"mean":0.0, "std":10.0}) DivergentConnect(noisy, neurones) print "Simulation en cours..." Simulate(TIME_SIM) rate=GetStatus(spikedetector,"n_events")[0] print "Nombre de PAs : "******"Frequence moyenne : ",rate #print "Nombre total de synapses : ", GetStatus("N2N","num_connections") if (plotMe): raster.from_device(spikedetector, "Petit raster artificiel", hist=True) plt.figure() plt.plot(GetStatus(correlator,"histogram")[0]) plt.show() rasterDict=GetStatus(spikedetector,"events")[0] return(rasterDict)
plt.plot(xaxis, LFP) plt.ylabel('LFP') plt.xlabel('s') plt.axis([0.2,10.25, -10, 2]) plt.title('LFP in mosaic model') ## save the LFP as a .dat file file = open('lfp.dat', 'wb') file.write(LFP) file.close() import nest.raster_plot as raster import nest.voltage_trace as vtrace for popName, SD in spikeDetectors.items(): try: raster.from_device(SD) fig = pylab.gcf() fig.suptitle(popName) except: continue ## find average firing rate up and down states dt = 20. simtime = 10000. bins = np.arange(200., simtime, dt) ratedict = dict() for popName, SD in spikeDetectors.items(): if popName in ['TC', 'RE', 'INmin', 'PYmin']: pass else:
def simulation(Params): #! ================= #! Import network #! ================= # NEST Kernel and Network settings nest.ResetKernel() nest.ResetNetwork() nest.SetKernelStatus({ "local_num_threads": Params['threads'], 'resolution': Params['resolution'] }) nest.SetStatus([0], {'print_time': True}) # import network description # import network # reload(network) # models, layers, conns = network.get_Network(Params) import network_full_keiko reload(network_full_keiko) models, layers, conns = network_full_keiko.get_Network(Params) # Create models for m in models: nest.CopyModel(m[0], m[1], m[2]) # Create layers, store layer info in Python variable for l in layers: exec '%s = tp.CreateLayer(l[1])' % l[0] # Create connections, need to insert variable names for c in conns: eval('tp.ConnectLayers(%s,%s,c[2])' % (c[0], c[1])) # --------------------------------------------------------------------# # ---------- SET IB NEURONS ----------------------------------------- # # --------------------------------------------------------------------# # 30% of Cortex L56 excitatory neurons are intrinsically bursting(IB) neuron. # That is achieved by setting pacemaker current I_h. # So select 30% of L56_exc neuron, and change h_g_peak from 0.0 to 1.0. # (Other cortical neuron do not have I_h, thus h_g_peak=0.0) L56_vertical_idx = [ nd for nd in nest.GetLeaves(Vp_vertical)[0] if nest.GetStatus([nd], 'model')[0] == 'L56_exc' ] L56_horizontal_idx = [ nd for nd in nest.GetLeaves(Vp_horizontal)[0] if nest.GetStatus([nd], 'model')[0] == 'L56_exc' ] num_neuron = len(L56_vertical_idx) num_ib = int(num_neuron * 0.3) ridx_vertical = np.random.randint(num_neuron, size=(1, num_ib))[0] ridx_horizontal = np.random.randint(num_neuron, size=(1, num_ib))[0] for i in range(1, num_ib, 1): nest.SetStatus([L56_vertical_idx[ridx_vertical[i]]], {'h_g_peak': 1.0}) nest.SetStatus([L56_horizontal_idx[ridx_horizontal[i]]], {'h_g_peak': 1.0}) # initiate network activity nest.Simulate(500.0) #nest.Simulate(100.0) #! ================= #! Recording devices #! ================= nest.CopyModel('multimeter', 'RecordingNode', params={ 'interval': Params['resolution'], 'record_from': [ 'V_m', 'I_syn_AMPA', 'I_syn_NMDA', 'I_syn_GABA_A', 'I_syn_GABA_B', 'g_AMPA', 'g_NMDA', 'g_GABAA', 'g_GABAB', 'I_h', 'I_NaP', 'I_KNa' ], 'record_to': ['memory'], 'withgid': True, 'withtime': False }) recorders = [] nest.CopyModel('multimeter', 'RecordingNodeIntrinsic', params={ 'interval': Params['resolution'], 'record_from': [ 'V_m', 'I_syn_AMPA', 'I_syn_NMDA', 'I_syn_GABA_A', 'I_syn_GABA_B', 'g_AMPA', 'g_NMDA', 'g_GABAA', 'g_GABAB', 'I_h', 'I_NaP', 'I_KNa' ], 'record_to': ['memory'], 'withgid': True, 'withtime': True }) recorders2 = [] for population, model in [(Retina_layer, 'Retina'), (Tp_layer, 'Tp_exc'), (Rp_layer, 'Rp'), (Vp_vertical, 'L23_exc'), (Vp_vertical, 'L23_inh'), (Vp_vertical, 'L4_exc'), (Vp_vertical, 'L56_exc')]: rec = nest.Create('RecordingNode') recorders.append([rec, population, model]) if (model == 'Retina'): nest.SetStatus(rec, {'record_from': ['rate']}) tgts = [ nd for nd in nest.GetLeaves(population)[0] if nest.GetStatus([nd], 'model')[0] == model ] nest.Connect(rec, tgts) for population, model in [(Vp_vertical, 'L23_exc')]: rec = nest.Create('RecordingNodeIntrinsic') recorders2.append([rec, population, model]) tgts = [ nd for nd in nest.GetLeaves(population)[0] if nest.GetStatus([nd], 'model')[0] == model ] nest.Connect(rec, tgts) #! ================= #! Spike detector #! ================= detectors = [] for population, model in [ (Retina_layer, 'Retina'), (Tp_layer, 'Tp_exc'), (Tp_layer, 'Tp_inh'), (Rp_layer, 'Rp'), (Vp_vertical, 'L23_exc'), (Vp_horizontal, 'L23_exc'), (Vp_vertical, 'L23_inh'), (Vp_horizontal, 'L23_inh'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc'), (Vp_vertical, 'L4_inh'), (Vp_horizontal, 'L4_inh'), (Vp_vertical, 'L56_exc'), (Vp_horizontal, 'L56_exc'), (Vp_vertical, 'L56_inh'), (Vp_horizontal, 'L56_inh') ]: rec = nest.Create('spike_detector', params={ "withgid": True, "withtime": True }) #rec = nest.Create('spike_detector') detectors.append([rec, population, model]) tgts = [ nd for nd in nest.GetLeaves(population)[0] if nest.GetStatus([nd], 'model')[0] == model ] if model == 'Retina': for t in tgts: try: nest.Connect([t], rec) print('connected %d' % t) except: print('%d did not work' % t) else: nest.Connect(tgts, rec) #! ==================== #! Simulation #! ==================== nest.SetStatus([0], {'print_time': True}) t_sim = 0 for t in Params['intervals']: if (t_sim == 0): gKL = 1.0 NaP_g_peak = 0.5 h_g_peak = 1.0 T_g_peak = 1.0 KNa_g_peak = 0.5 I_syn_AMPA_gain = 1.0 # keiko added this parameter in ht_neuron.cpp print(t_sim) ''' # Nov23 comment-out if (t_sim==1): gKL = 1.0 + 0.8/2.0 NaP_g_peak = 0.5 + 0.75/2.0 h_g_peak = 1.0 + 1.0/2.0 T_g_peak = 1.0 + 0.25/2.0 KNa_g_peak = 0.5 + 0.75/2.0 I_syn_AMPA_gain = 1.0 + 0.5/2.0 # keiko added this parameter in ht_neuron.cpp #I_syn_AMPA_gain = 1.0 + 0.25/2.0 # keiko added this parameter in ht_neuron.cpp print(t_sim) ''' if (t_sim == 1): gKL = 1.0 + 0.8 * (1.0 / 4.0) NaP_g_peak = 0.5 + 0.75 * (1.0 / 4.0) h_g_peak = 1.0 + 1.0 * (1.0 / 4.0) T_g_peak = 1.0 + 0.25 * (1.0 / 4.0) KNa_g_peak = 0.5 + 0.75 * (1.0 / 4.0) I_syn_AMPA_gain = 1.0 + 0.25 * ( 1.0 / 4.0) # keiko added this parameter in ht_neuron.cpp #I_syn_AMPA_gain = 1.0 + 0.25/2.0 # keiko added this parameter in ht_neuron.cpp print(t_sim) if (t_sim == 2): gKL = 1.0 + 0.8 * (2.0 / 4.0) NaP_g_peak = 0.5 + 0.75 * (2.0 / 4.0) h_g_peak = 1.0 + 1.0 * (2.0 / 4.0) T_g_peak = 1.0 + 0.25 * (2.0 / 4.0) KNa_g_peak = 0.5 + 0.75 * (2.0 / 4.0) I_syn_AMPA_gain = 1.0 + 0.25 * ( 2.0 / 4.0) # keiko added this parameter in ht_neuron.cpp #I_syn_AMPA_gain = 1.0 + 0.25/2.0 # keiko added this parameter in ht_neuron.cpp print(t_sim) if (t_sim == 3): gKL = 1.0 + 0.8 * (3.0 / 4.0) NaP_g_peak = 0.5 + 0.75 * (3.0 / 4.0) h_g_peak = 1.0 + 1.0 * (3.0 / 4.0) T_g_peak = 1.0 + 0.25 * (3.0 / 4.0) KNa_g_peak = 0.5 + 0.75 * (3.0 / 4.0) I_syn_AMPA_gain = 1.0 + 0.25 * ( 3.0 / 4.0) # keiko added this parameter in ht_neuron.cpp #I_syn_AMPA_gain = 1.0 + 0.25/2.0 # keiko added this parameter in ht_neuron.cpp print(t_sim) if (t_sim == 4): gKL = 1.0 + 0.8 NaP_g_peak = 0.5 + 0.75 h_g_peak = 1.0 + 1.0 T_g_peak = 1.0 + 0.25 KNa_g_peak = 0.5 + 0.75 I_syn_AMPA_gain = 1.0 + 0.25 # keiko added this parameter in ht_neuron.cpp #I_syn_AMPA_gain = 1.0 + 0.25 # keiko added this parameter in ht_neuron.cpp print(t_sim) t_sim += 1 # change conductances in all populations for l in layers: sim_elements = l[1]['elements'] for m in np.arange(0, np.size(sim_elements), 1): if (np.size(sim_elements) == 1): sim_model = sim_elements else: sim_model = sim_elements[m] exec("la = %s" % l[0]) pop = [ nd for nd in nest.GetLeaves(la)[0] if nest.GetStatus([nd], 'model')[0] == sim_model ] if (l[0] != 'Retina_layer'): for cell in pop: nest.SetStatus([cell], {'g_KL': gKL}) if (nest.GetStatus([cell], 'NaP_g_peak')[0]) > 0.0: nest.SetStatus([cell], {'NaP_g_peak': NaP_g_peak}) if (nest.GetStatus([cell], 'h_g_peak')[0]) > 0.0: nest.SetStatus([cell], {'h_g_peak': h_g_peak}) if (nest.GetStatus([cell], 'T_g_peak')[0]) > 0.0: nest.SetStatus([cell], {'T_g_peak': T_g_peak}) if (nest.GetStatus([cell], 'KNa_g_peak')[0]) > 0.0: nest.SetStatus([cell], {'KNa_g_peak': KNa_g_peak}) #if((nest.GetStatus([cell],'I_syn_AMPA_gain')[0])>0.0): # nest.SetStatus([cell], {'I_syn_AMPA_gain': I_syn_AMPA_gain}) # keiko if l[0].__contains__('Vp') or l[0].__contains__('Vs'): #print('%s %s' %(l[0], sim_model)) for cell in pop: nest.SetStatus( [cell], {'I_syn_AMPA_gain': I_syn_AMPA_gain}) # keiko # simulate interval nest.Simulate(t) #! ==================== #! Plot Results #! ==================== print "plotting..." rows = 11 cols = 2 fig = plt.figure() fig.subplots_adjust(hspace=0.4) # Plot A: membrane potential rasters recorded_models = [(Retina_layer, 'Retina'), (Vp_vertical, 'L23_exc'), (Vp_vertical, 'L4_exc'), (Vp_vertical, 'L56_exc'), (Rp_layer, 'Rp'), (Tp_layer, 'Tp_exc')] plotting.potential_raster(fig, recorders, recorded_models, 100, 3 * Params['Np'], np.sum(Params['intervals']), Params['resolution'], rows, cols, 0) # Plot B: individual intracellular traces recorded_models = [(Vp_vertical, 'L23_exc'), (Vp_vertical, 'L23_inh'), (Rp_layer, 'Rp'), (Tp_layer, 'Tp_exc')] # original #plotting.intracellular_potentials(fig,recorders,recorded_models,100,rows,cols,6) # keiko total_time = 0.0 for t in Params['intervals']: total_time += t plotting.intracellular_potentials(fig, recorders, recorded_models, 100, rows, cols, 6, total_time) # Plot C: topographical activity of the up- and down-states recorded_models = [(Vp_vertical, 'L23_exc')] labels = ["Upstate"] start = 2500.0 stop = 2510.0 #start = 900.0 #stop = 910.0 plotting.topographic_representation(fig, recorders, recorded_models, labels, Params['Np'], np.sum(Params['intervals']), Params['resolution'], rows, cols, start, stop, 10, 0) labels = ["Downstate"] start = 2600.0 stop = 2610.0 #start = 1550.0 #stop = 1560.0 plotting.topographic_representation(fig, recorders, recorded_models, labels, Params['Np'], np.sum(Params['intervals']), Params['resolution'], rows, cols, start, stop, 10, 1) # Plot D: Intrinsic currents of a selected cell recorded_models = [(Vp_vertical, 'L23_exc')] plotting.intrinsic_currents(recorders2, recorded_models, 100) plotting.synaptic_currents(recorders2, recorded_models, 100) plt.show() # Plot E: movie #labels = ["Osc_Vp_L23_Vertical"] #recorded_models = [(Vp_vertical,'L23_exc')] #plotting.makeMovie(fig,recorders,recorded_models,labels,Params['Np'],np.sum(Params['intervals']),Params['resolution']) #! ==================== #! Save Results #! ==================== print('save recorders data') # Set folder rootdir = '/home/kfujii2/newNEST2/ht_model_pablo_based/data/' expdir = '' # expdir = 'random_full/' # expdir = 'structured_full/' data_folder = rootdir + expdir if not os.path.isdir(data_folder): os.makedirs(data_folder) # To save spike data, set pairs of population id and its name population_name = [{ 'population': Retina_layer, 'name': 'Retina' }, { 'population': Vp_vertical, 'name': 'Vp_v' }, { 'population': Vp_horizontal, 'name': 'Vp_h' }, { 'population': Rp_layer, 'name': 'Rp' }, { 'population': Tp_layer, 'name': 'Tp' }] # vertical population = population_name[1]['population'] name = population_name[1]['name'] model_list = ['L23_exc', 'L56_exc'] for model in model_list: l = [ nd for nd in np.arange(0, len(recorders)) if (recorders[nd][1] == population and recorders[nd][2] == model) ][0] data = nest.GetStatus(recorders[l][0], keys='events')[0] scipy.io.savemat(data_folder + '/recorder_' + name + '_' + model + '.mat', mdict={ 'senders': data['senders'], 'V_m': data['V_m'], 'I_syn_AMPA': data['I_syn_AMPA'], 'I_syn_NMDA': data['I_syn_NMDA'], 'I_syn_GABA_A': data['I_syn_GABA_A'], 'I_syn_GABA_B': data['I_syn_GABA_B'], 'g_AMPA': data['g_AMPA'], 'g_NMDA': data['g_NMDA'], 'g_GABAA': data['g_GABAA'], 'g_GABAB': data['g_GABAB'] }) print('save raster images') plt.close() for rec, population, model in detectors: spikes = nest.GetStatus(rec, 'events')[0] # Get name of population for p in range(0, len(population_name), 1): if population_name[p]['population'] == population: p_name = population_name[p]['name'] raster = raster_plot.from_device(rec, hist=True) pylab.title(p_name + '_' + model) f = raster[0].figure f.set_size_inches(15, 9) f.savefig(data_folder + 'spikes_' + p_name + '_' + model + '.png', dpi=100) plt.close() ''' # Set filename and save spike data filename = data_folder + 'spike_' + p_name + '_' + model + '.pickle' pickle.dump(spikes, open(filename, 'w')) filename_AMPA = data_folder + 'connection_' + p_name + '_AMPA_syn' + '.dat' filename_NMDA = data_folder + 'connection_' + p_name + '_NMDA_syn' + '.dat' filename_GABAA = data_folder + 'connection_' + p_name + '_GABA_A_syn' + '.dat' filename_GABAB = data_folder + 'connection_' + p_name + '_GABA_B_syn' + '.dat' tp.DumpLayerConnections(population, 'AMPA_syn', filename_AMPA) tp.DumpLayerConnections(population, 'NMDA_syn', filename_NMDA) tp.DumpLayerConnections(population, 'GABA_A_syn', filename_GABAA) tp.DumpLayerConnections(population, 'GABA_B_syn', filename_GABAB) ''' '''
def simulation(Params): root_folder = Params['root_folder'] if not os.path.isdir(root_folder): os.makedirs(root_folder) net_folder = root_folder + Params['net_folder'] if not os.path.isdir(net_folder): os.makedirs(net_folder) conn_folder = net_folder + '/connections' if not os.path.isdir(conn_folder): os.makedirs(conn_folder) data_folder = net_folder + Params['data_folder'] if not os.path.isdir(data_folder): os.makedirs(data_folder) #! ================= #! Import network #! ================= # NEST Kernel and Network settings nest.ResetKernel() nest.ResetNetwork() nest.SetKernelStatus({"local_num_threads": Params['threads'],'resolution': Params['resolution']}) nest.SetStatus([0],{'print_time': True}) # initialize random seed import time msd = int(round(time.time() * 1000)) nest.SetKernelStatus({'grng_seed' : msd}) # Tom debug # nest.SetKernelStatus({'rng_seeds' : range(msd+Params['threads']+1, msd+2*Params['threads']+1)}) nest.SetKernelStatus({'rng_seeds': range(msd + Params['threads'] + 1, msd + 2 * Params['threads'] + 1)}) import importlib network = importlib.import_module(Params['network']) reload(network) models, layers, conns = network.get_Network(Params) #import network_full_keiko #reload(network_full_keiko) # models, layers, conns = network_full_keiko.get_Network(Params) # TODO this should come from network file synapse_models = ['AMPA_syn', 'NMDA_syn', 'GABA_A_syn', 'GABA_B_syn', 'reticular_projection'] # synapse_models = ['AMPA_syn', 'NMDA_syn', 'GABA_A_syn', 'GABA_B_syn'] # Create models print('Creating models...', end="") for m in models: print('.', end="") # print(m), print('\n') nest.CopyModel(m[0], m[1], m[2]) print(' done.') # Create layers, store layer info in Python variable print('Creating layers...', end="") for l in layers: print('.', end="") exec '%s = tp.CreateLayer(l[1])' % l[0] in globals(), locals() print(' done.') # now either create brand new connections, or load connectivity files from # connections_file connections_file = conn_folder + '/connections.pickle' # assume alread runned before, and it is going to load connections and layers if Params.has_key('load_connections') and Params['load_connections']: if not os.path.isfile(connections_file): raise IOError('File with connections was never created: %s' % connections_file) print('Loading connections...', end="") with open(connections_file) as f: (pre, post_intact, post_scrambled, w, d, syn) = pickle.load(f) print(' done.') if Params['scrambled']: post = post_scrambled else: post = post_intact print('Connecting neurons...', end="") con_dict = {'rule': 'one_to_one'} for (pi, ti, wi, di, syni) in zip(pre, post, w, d, syn): print('.', end="") # print(syni) syn_dict = {"model": syni, 'weight': wi, 'delay': di } nest.Connect(pi, ti, con_dict, syn_dict) print(' done.') # print('Connection retina...', end="") # # Create connections, need to insert variable names # for c in conns: # if c[0]=='Retina_layer': # eval('tp.ConnectLayers(%s,%s,c[2])' % (c[0], c[1])) # print('done.') else: # Create connections, need to insert variable names print('Creating connections...', end="") for c in conns: if Params['Np'] < 40: print('%s -> %s' % (c[0], c[1])) c[2]['allow_oversized_mask'] = True else: print('.', end="") eval('tp.ConnectLayers(%s,%s,c[2])' % (c[0], c[1])) print(' done.') if Params.has_key('dump_connections') and Params['dump_connections']: import glob # First dump all nodes and connections to files for l in layers: print('dumping connections for %s' % l[0]) eval("tp.DumpLayerNodes(%s, conn_folder + '/nodes_%s.dump')" % (l[0], l[0]) ) for synapse in synapse_models: eval("tp.DumpLayerConnections(%s, '%s', conn_folder + '/connections_%s_%s.dump')" % (l[0], synapse, l[0], synapse) ) # Now load all nodes, and mark which physical layer they belong to all_nodes_files = glob.glob(conn_folder + "/nodes_*.dump") if len(all_nodes_files) < 1: raise ValueError('No files save for this configuration. First ' 'run with load_connection = False') pop_nodes = [None] * len(all_nodes_files) pop_names = [None] * len(all_nodes_files) perm_pop_nodes = [None] * len(all_nodes_files) for (idx, pop_file) in enumerate(all_nodes_files): population = pop_file[pop_file.find('nodes_')+6:-5] pop_names[idx] = population print('Loading nodes for population %s' % population) pop_nodes[idx] = np.loadtxt(pop_file) # identify physical layers n_layer = 0 n_nodes = pop_nodes[idx].shape[0] layers = np.zeros((n_nodes,1)) for i_line in range(n_nodes): if pop_nodes[idx][i_line, 1] == -3.9 and pop_nodes[idx][i_line, 2] == 3.9: n_layer += 1 layers[i_line] = n_layer pop_nodes[idx] = np.append(pop_nodes[idx], layers, 1) # Finally, load connections and save a big vector for each one of the 5 # parameters needed by nest.Connect: pre, post, w, d, and synapse_model # Save unmodified and scrambled versions in network.pickle all_conn_files = glob.glob(conn_folder + "/connections_*.dump") pre = [] post_intact = [] post_scrambled = [] w = [] d = [] syn = [] for (idx, pop_conn_file) in enumerate(all_conn_files): population = pop_conn_file[pop_conn_file.find('connections_')+12:-5] print('Scrambling connections for %s (%d out of %d files)' % (population, idx+1, len(all_conn_files))) synapse_model = [s for i,s in enumerate(synapse_models) if s in population][0] print('Loading file') pop_conns = np.loadtxt(pop_conn_file) tn_lines = pop_conns.shape[0] if tn_lines > 0: syn.append(synapse_model) pre.append(pop_conns[:,0].astype(int)) post_intact.append(pop_conns[:,1].astype(int)) w.append(pop_conns[:,2]) d.append(pop_conns[:,3].astype(int)) # Do the actual scrfambling # TODO this should be optimized, it is way too slow if any(w == population[0:2] for w in ['Vs', 'Vp']): print('Scrambling...', end="") for i_line in range(tn_lines): if not i_line % round(tn_lines/10.): print('%d%%, ' % (round(100.*i_line/tn_lines) if i_line > 0 else 0), end="") for (i_pop, this_pop) in enumerate(pop_nodes): t_idx = np.where(this_pop[:,0] == pop_conns[i_line, 1])[0] if t_idx.size: break if not t_idx.size: raise ValueError('Could not find tartget %s for node %s' % (pop_conns[i_line, 1], pop_conns[i_line, 0])) if len(t_idx) > 1: raise ValueError('Target %s apears in more than one population' % (pop_conns[i_line, 1], pop_conns[i_line, 0])) new_t_idx = t_idx[0] # For the moment, only scramble connections within the visual cortex if any(w == pop_names[i_pop][0:2] for w in ['Vs', 'Vp']): possible_targets = pop_nodes[i_pop][pop_nodes[i_pop][:,3] == pop_nodes[i_pop][new_t_idx,3], 0] pop_conns[i_line, 1] = np.random.permutation(possible_targets)[0] print('done.') post_scrambled.append(pop_conns[:,1].astype(int)) # save results print('Saving results...', end="") with open(connections_file, 'w') as f: pickle.dump((pre, post_intact, post_scrambled, w, d, syn), f) print(' done.') if Params.has_key('show_V4_num_conn_figure') and Params['show_V4_num_conn_figure']: horizontal_nodes = nest.GetLeaves(Vp_horizontal, properties={'model': 'L4_exc'}, local_only=True)[0] vertical_nodes = nest.GetLeaves(Vp_vertical, properties={'model': 'L4_exc'}, local_only=True)[0] n_conns_hor = [] for (idx, horizontal_node) in enumerate(horizontal_nodes): tgt_map = [] this_conns = nest.GetConnections([horizontal_node], horizontal_nodes, synapse_model='AMPA_syn') tgt_map.extend([conn[1] for conn in this_conns]) n_conns_hor.append(len(tgt_map)) plt.figure() plt.hist(n_conns_hor, range(0, max(n_conns_hor + [30]))) plt.title('# of connections Vp(h) L4pyr -> Vp(h) L4Pyr') n_conns_hor = [] for (idx, horizontal_node) in enumerate(horizontal_nodes): tgt_map = [] this_conns = nest.GetConnections([horizontal_node], vertical_nodes, synapse_model='AMPA_syn') tgt_map.extend([conn[1] for conn in this_conns]) n_conns_hor.append(len(tgt_map)) # nest.DisconnectOneToOne(tp_node, tgt_map[0], {"synapse_model": "AMPA_syn"}) #nest.Disconnect([tp_node], tgt_map, 'one_to_one', {"synapse_model": "AMPA_syn"}) plt.figure() plt.hist(n_conns_hor, range(0, max(n_conns_hor + [30]))) plt.title('# of connections Vp(h) L4pyr -> Vp(v) L4Pyr') n_conns_ver = [] for (idx, vertical_node) in enumerate(vertical_nodes): tgt_map = [] this_conns = nest.GetConnections([vertical_node], vertical_nodes, synapse_model='AMPA_syn') tgt_map.extend([conn[1] for conn in this_conns]) n_conns_ver.append(len(tgt_map)) plt.figure() plt.hist(n_conns_ver, range(0, max(n_conns_ver + [30]))) plt.title('# of connections Vp(v) L4pyr -> Vp(v) L4Pyr') n_conns_ver = [] for (idx, vertical_node) in enumerate(vertical_nodes): tgt_map = [] this_conns = nest.GetConnections([vertical_node], horizontal_nodes, synapse_model='AMPA_syn') tgt_map.extend([conn[1] for conn in this_conns]) n_conns_ver.append(len(tgt_map)) plt.figure() plt.hist(n_conns_ver, range(0, max(n_conns_ver + [30]))) plt.title('# of connections Vp(v) L4pyr -> Vp(h) L4Pyr') plt.show() # Check connections if Params.has_key('show_center_connectivity_figure') and Params['show_center_connectivity_figure']: # this code only gives one element, and you have no control over the # model it comes from... # tp.PlotTargets(tp.FindCenterElement(Vp_horizontal), Vp_horizontal, 'L56_exc', 'AMPA_syn') # tp.PlotTargets(tp.FindCenterElement(Vp_horizontal), Vp_vertical, 'L56_exc', 'AMPA_syn') # tp.PlotTargets(tp.FindCenterElement(Vp_vertical), Vp_horizontal, 'L56_exc', 'AMPA_syn') # tp.PlotTargets(tp.FindCenterElement(Vp_vertical), Vp_vertical, 'L56_exc', 'AMPA_syn') # this way I can get all nodes in the positions, and later filter per Model using GetStatus # IMPORTANT: when layer has even number of neurons per line/column # using center (0,0) makes the function return 4 neurons # per postiion since they all have the same distance. # Using (-0,1, 0,1) solves this problem. # When using odd number perhaps this has to change... for src_label in ['Tp_layer', 'Vp_vertical', 'Vp_horizontal']: for tgt_label in ['Tp_layer', 'Vp_vertical', 'Vp_horizontal']: if src_label == 'Tp_layer' and src_label == tgt_label: continue print('source population %s' % src_label) print('target population %s' % tgt_label) n_plot = 0 f = plt.figure() f.canvas.set_window_title('AMPA Connections: %s -> %s' % (src_label, tgt_label)) all_center = eval('tp.FindNearestElement(%s, (-0.1, 0.1), True)[0]' % src_label) for n in all_center: s = nest.GetStatus([n]) p = tp.GetPosition([n]) # print('%s : (%2.2f, %2.2f)' % (s[0]['model'], p[0][0], p[0][1])) m1 = s[0]['model'].name print('Source neuron model %s' % m1) if m1.find('_exc') > -1: if src_label.find('Tp_') > -1: print( 'found Tp_') # target has to be one of Vp_ or Vs_ models target_models = ['L23_exc', 'L4_exc', 'L56_exc'] elif src_label.find('Vp_') > -1 or src_label.find('Vs') > -1: # if target is Vp_ of Vs_ too, then one of those models if tgt_label.find('Vp_') > -1: target_models = ['L23_exc', 'L4_exc', 'L56_exc'] elif tgt_label.find('Tp_') > -1: # otherwise it has to be a Tp_target target_models = ['Tp_exc'] else: raise ValueError('Invalide target %s for source model: %s' % (tgt_label, src_label)) else: raise ValueError('Invalide source model: %s' % (src_label)) for m2 in target_models: print('Target neuron model %s' % m2) try: get_targets_command = 'tp.GetTargetNodes([n], %s, m2, "AMPA_syn")[0]' % tgt_label print(get_targets_command) targets = eval(get_targets_command) if len(targets) > 0: n_plot += 1 f.add_subplot(3,5,n_plot) eval('tp.PlotTargets([n], %s, m2, "AMPA_syn", f)' % tgt_label) plt.title('%s -> %s' % (m1, m2), fontsize=9) except: print('didnt work') f.savefig(data_folder + '/connectivity_%s_%s.png' % (src_label, tgt_label), dpi=100) if Params.has_key('show_V4_connectivity_figure') and Params['show_V4_connectivity_figure']: Vp_hor_gids = tp.GetElement(Vp_horizontal, [0,0]) n_Vp_hor = len(Vp_hor_gids) f = [] for idx in range(n_Vp_hor): f.append(plt.figure()) positions = range(0,41,10) positions[-1] -= 1 for xi in range(len(positions)): for yi in range(len(positions)): print("Position [%d,%d] : %d" %(xi,yi,yi*(len(positions))+xi+1)) x = positions[xi] y = positions[yi] Vp_hor_gids = tp.GetElement(Vp_horizontal, [x,y]) Vp_hor_status = nest.GetStatus(Vp_hor_gids) for (idx, n) in enumerate(Vp_hor_status): if n['Tau_theta'] == 2.0: print(idx) try: f[idx].add_subplot(len(positions), len(positions), yi*(len(positions))+xi+1) tp.PlotTargets([Vp_hor_gids[idx]], Vp_horizontal, 'L4_exc', 'AMPA_syn', f[idx]) except: print('%i bad' % Vp_hor_gids[idx]) plt.show() if Params.has_key('dry_run') and Params['dry_run']: print('Only generation, loading and ploting network. No actual simulation done.') return ''' # pablo # Create vertical grating for n in nest.GetLeaves(Retina_layer)[0]: retina_0 = (nest.GetLeaves(Retina_layer)[0])[0] col = (n-retina_0)/Params['Np'] cells_per_degree = Params['Np']/Params['visSize'] cells_per_cycle = cells_per_degree/Params['spatial_frequency'] nest.SetStatus([n], { "phase": col * 360/(cells_per_cycle-1) }) ''' ### keiko if Params['lambda_dg'] >= 0: [nest.SetStatus([n], {"phase": phaseInit(tp.GetPosition([n])[0], Params["lambda_dg"], Params["phi_dg"])}) for n in nest.GetLeaves(Retina_layer)[0]] else: # Leonardo: Random retina input [nest.SetStatus([n], {"phase": phaseInit(tp.GetPosition([n])[0], np.pi * np.random.rand(), np.pi * np.random.rand())}) for n in nest.GetLeaves(Retina_layer)[0]] # --------------------------------------------------------------------# # ---------- SET IB NEURONS ----------------------------------------- # # --------------------------------------------------------------------# # 30% of Cortex L56 excitatory neurons are intrinsically bursting(IB) neuron. # That is achieved by setting pacemaker current I_h. # So select 30% of L56_exc neuron, and change h_g_peak from 0.0 to 1.0. # (Other cortical neuron do not have I_h, thus h_g_peak=0.0) L56_vertical_idx = [nd for nd in nest.GetLeaves(Vp_vertical)[0] if nest.GetStatus([nd], 'model')[0]=='L56_exc'] L56_horizontal_idx = [nd for nd in nest.GetLeaves(Vp_horizontal)[0] if nest.GetStatus([nd], 'model')[0]=='L56_exc'] num_neuron = len(L56_vertical_idx) num_ib = int(num_neuron*0.3) ridx_vertical = np.random.randint(num_neuron, size=(1,num_ib))[0] ridx_horizontal = np.random.randint(num_neuron, size=(1,num_ib))[0] for i in range(1,num_ib,1): nest.SetStatus([L56_vertical_idx[ridx_vertical[i]]], {'g_peak_h': 1.0}) nest.SetStatus([L56_horizontal_idx[ridx_horizontal[i]]], {'g_peak_h': 1.0}) # initiate network activity #nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'rate': Params['ret_rate']}) nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'rate': Params['ret_rate']}) nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0}) nest.Simulate(500.0) #! ================= #! Recording devices #! ================= print('Connecting recorders...', end="") nest.CopyModel('multimeter', 'RecordingNode', params = {'interval' : Params['resolution'], 'record_from': ['V_m'],#, # Put back when plotting synaptic currents, otherwise makes everything slower for no reason # 'I_syn_AMPA', # 'I_syn_NMDA', # 'I_syn_GABA_A', # 'I_syn_GABA_B', # 'g_AMPA', # 'g_NMDA', # 'g_GABA_A', # 'g_GABA_B'], #'I_NaP', #'I_KNa', #'I_T', #'I_h' #] 'record_to' : ['memory'], 'withgid' : True, 'withtime' : True}) recorders = [] ''' for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Tp_layer , 'Tp_inh'), (Rp_layer , 'Rp'), (Vp_vertical, 'L23_exc'), (Vp_horizontal, 'L23_exc'), (Vp_vertical, 'L23_inh'), (Vp_horizontal, 'L23_inh'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc'), (Vp_vertical, 'L4_inh'), (Vp_horizontal, 'L4_inh'), (Vp_vertical, 'L56_exc'), (Vp_horizontal, 'L56_exc'), (Vp_vertical, 'L56_inh'), (Vp_horizontal, 'L56_inh'), (Vs_vertical, 'L23_exc'), (Vs_horizontal, 'L23_exc'), (Vs_vertical, 'L23_inh'), (Vs_horizontal, 'L23_inh'), (Vs_vertical, 'L4_exc'), (Vs_horizontal, 'L4_exc'), (Vs_vertical, 'L4_inh'), (Vs_horizontal, 'L4_inh'), (Vs_vertical, 'L56_exc'), (Vs_horizontal, 'L56_exc'), (Vs_vertical, 'L56_inh'), (Vs_horizontal, 'L56_inh')]: ''' # for population, model in [(Retina_layer, 'Retina'), # (Tp_layer , 'Tp_exc'), # (Tp_layer , 'Tp_inh'), # (Vp_vertical, 'L4_exc'), # (Vp_vertical, 'L4_inh'), # (Vp_horizontal, 'L4_exc'), # (Vp_vertical, 'L23_exc'), # (Vp_horizontal, 'L23_exc'), # (Vp_vertical, 'L56_exc'), # (Rp_layer, 'Rp')]: for population, model in [(Retina_layer, 'Retina'), # (Tp_layer , 'Tp_exc'), # (Tp_layer , 'Tp_inh'), (Vp_vertical, 'L4_inh'), (Vp_horizontal, 'L4_exc'), (Vp_horizontal, 'L23_exc'), # (Rp_layer, 'Rp'), (Vp_vertical, 'L23_exc'), (Vp_vertical, 'L4_exc'), (Vp_vertical, 'L56_exc'), (Vs_vertical, 'L23_exc'), (Vs_vertical, 'L4_exc'), (Vs_vertical, 'L56_exc'), ]: print('.', end="") rec = nest.Create('RecordingNode') recorders.append([rec,population,model]) if (model=='Retina'): nest.SetStatus(rec,{'record_from': ['rate']}) tgts = [nd for nd in nest.GetLeaves(population)[0] if nest.GetStatus([nd], 'model')[0]==model] #nest.Connect(rec, tgts, None, {'delay': recorders_delay}) nest.Connect(rec, tgts) print('done.') #! ================= #! Spike detector #! ================= print('Connecting detectors...', end="") detectors = [] ''' for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Tp_layer , 'Tp_inh'), (Rp_layer , 'Rp'), (Vp_vertical, 'L23_exc'), (Vp_horizontal, 'L23_exc'), (Vp_vertical, 'L23_inh'), (Vp_horizontal, 'L23_inh'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc'), (Vp_vertical, 'L4_inh'), (Vp_horizontal, 'L4_inh'), (Vp_vertical, 'L56_exc'), (Vp_horizontal, 'L56_exc'), (Vp_vertical, 'L56_inh'), (Vp_horizontal, 'L56_inh'), (Vs_vertical, 'L23_exc'), (Vs_horizontal, 'L23_exc'), (Vs_vertical, 'L23_inh'), (Vs_horizontal, 'L23_inh'), (Vs_vertical, 'L4_exc'), (Vs_horizontal, 'L4_exc'), (Vs_vertical, 'L4_inh'), (Vs_horizontal, 'L4_inh'), (Vs_vertical, 'L56_exc'), (Vs_horizontal, 'L56_exc'), (Vs_vertical, 'L56_inh'), (Vs_horizontal, 'L56_inh')]: ''' ''' for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Tp_layer , 'Tp_inh'), (Vp_vertical, 'L23_exc'), (Vp_horizontal, 'L23_exc'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc')]: ''' #Tom for population, model in [(Retina_layer, 'Retina'), # (Tp_layer, 'Tp_exc'), # (Tp_layer, 'Tp_inh'), (Vp_vertical, 'L23_exc'), (Vp_vertical, 'L4_exc'), (Vp_vertical, 'L56_exc'), (Vp_vertical, 'L23_inh'), (Vp_vertical, 'L4_inh'), (Vp_vertical, 'L56_inh'), (Vs_vertical, 'L23_exc'), (Vs_vertical, 'L23_inh'), (Vs_vertical, 'L4_exc'), (Vs_vertical, 'L4_inh'), (Vs_vertical, 'L56_exc'), (Vs_vertical, 'L56_inh')]: print('.', end="") rec = nest.Create('spike_detector', params={"withgid": True, "withtime": True}) #rec = nest.Create('spike_detector') detectors.append([rec,population,model]) tgts = [nd for nd in nest.GetLeaves(population)[0] if nest.GetStatus([nd], 'model')[0]==model] if model == 'Retina': for t in tgts: try: # nest.Connect([t], rec, None, {'delay': recorders_delay}) nest.Connect([t], rec) print('connected %d' % t) except: print('%d did not work' % t) else: # nest.Connect(tgts, rec, None, {'delay': recorders_delay}) nest.Connect(tgts, rec) print('done.') #! ==================== #! Simulation #! ==================== ''' # change gKL to 0.8 in all populations (necessary to get a little stronger evoked response) for l in layers: sim_elements = l[1]['elements'] for m in np.arange(0,np.size(sim_elements),1): if(np.size(sim_elements)==1): sim_model = sim_elements else: sim_model = sim_elements[m] exec("la = %s" % l[0]) pop = [nd for nd in nest.GetLeaves(la)[0] if nest.GetStatus([nd], 'model')[0]==sim_model] if (l[0]!='Retina_layer'): for cell in pop: nest.SetStatus([cell], {'g_KL':0.8}) ''' # Simulate for t in Params['intervals']: #if (t == 250.0): # Stimulus ON # # if (t == 1500.0): # Stimulus ON # nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 45.0}) #else: # Stimulus OFF # nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0}) if Params['input_flag']==True: nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': Params['ret_rate']}) else: nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0}) nest.Simulate(t) #! ==================== #! Plot Results #! ==================== print("Creating figure 3...") rows = 9 cols = 2 fig = plt.figure(num=None, figsize=(13, 24), dpi=100) fig.subplots_adjust(hspace=0.4) # Plot A: membrane potential rasters recorded_models = [(Retina_layer,'Retina'), (Vp_vertical,'L23_exc'), (Vp_vertical,'L4_exc'), (Vp_vertical,'L56_exc'), (Vs_vertical,'L23_exc'), (Vs_vertical,'L4_exc')] #plotting.potential_raster(fig,recorders,recorded_models,0,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,0) plotting.potential_raster(fig,recorders,recorded_models,0,Params['Np'], np.sum(Params['intervals']), Params['resolution'], rows,cols,0) #starting_neuron = 800+1 #plotting.potential_raster(fig,recorders,recorded_models,starting_neuron,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,0) plt.title('Evoked') # Plot B: individual intracellular traces recorded_models =[(Vp_vertical,'L4_exc'), (Vp_vertical,'L4_inh')] #plotting.intracellular_potentials(fig, recorders, recorded_models, 21, rows, cols, 6) #original # keiko total_time = 0.0 for t in Params['intervals']: total_time += t #draw_neuron = (Params['Np']*Params['Np']/2) #plotting.intracellular_potentials(fig, recorders, recorded_models, draw_neuron, rows, cols, 6, total_time) plotting.intracellular_potentials(fig, recorders, recorded_models, 21, rows, cols, 6, total_time) #plotting.intracellular_potentials(fig, recorders, recorded_models, 820, rows, cols, 6, total_time) # Plot C: topographical activity of the vertical and horizontal layers if Params.has_key('start_membrane_potential') and Params.has_key('end_membrane_potential'): start = Params['start_membrane_potential'] stop = Params['end_membrane_potential'] else: start = 130.0 stop = 140.0 recorded_models = [(Vp_vertical,'L23_exc')] labels = ["Vertical"] plotting.topographic_representation(fig, recorders, recorded_models, labels, Params['Np'], np.sum(Params['intervals']), Params['resolution'], rows, cols, start, stop, 8, 0) recorded_models = [(Vp_horizontal,'L23_exc')] labels = ["Horizontal"] plotting.topographic_representation(fig,recorders,recorded_models,labels,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,start,stop,8,1) fig.savefig(data_folder + '/figure3.png', dpi=100) if Params.has_key('show_main_figure') and Params['show_main_figure']: plt.show() # Plot D: movie #labels = ["Evoked_Vp_L23_Vertical","Evoked_Vp_L23_Horizontal"] #recorded_models = [(Vp_vertical,'L23_exc'),(Vp_horizontal,'L23_exc')] #plotting.makeMovie(fig,recorders,recorded_models,labels,Params['Np'],np.sum(Params['intervals']),Params['resolution']) #! ==================== #! Save Results #! ==================== print('save recorders data') # Set folder #rootdir = '/home/kfujii2/newNEST2/ht_model_pablo_based/data/' #expdir = 'random/' # expdir = 'random_full/' # expdir = 'structured_full/' # data_folder = rootdir + expdir # To save spike data, set pairs of population id and its name population_name = [ {'population': Retina_layer, 'name': 'Retina'}, {'population': Vp_vertical, 'name': 'Vp_v'}, {'population': Vp_horizontal, 'name': 'Vp_h'}, # {'population': Rp_layer, 'name': 'Rp'}, # {'population': Tp_layer, 'name': 'Tp'}, {'population': Vs_vertical, 'name': 'Vs_v'}, {'population': Vs_horizontal, 'name': 'Vs_h'}] if Params.has_key('save_recorders') and Params['save_recorders']: for rec, population, model in recorders: # Get name of population for p in range(0, len(population_name), 1): if population_name[p]['population'] == population: p_name = population_name[p]['name'] data = nest.GetStatus(rec)[0]['events'] if model == 'Retina': scipy.io.savemat(data_folder + '/recorder_' + p_name + '_' + model + '.mat', mdict={'senders': data['senders'], 'rate': data['rate']}) else: scipy.io.savemat(data_folder + '/recorder_' + p_name + '_' + model + '.mat', mdict={'senders': data['senders'], 'times': data['times'], 'V_m': data['V_m'], #'I_syn_AMPA': data['I_syn_AMPA'], #'I_syn_NMDA': data['I_syn_NMDA'], #'I_syn_GABA_A': data['I_syn_GABA_A'], #'I_syn_GABA_B': data['I_syn_GABA_B'], # 'g_AMPA': data['g_AMPA'], # 'g_NMDA': data['g_NMDA'], # 'g_GABA_A': data['g_GABA_A'], # 'g_GABA_B': data['g_GABA_B'] } ) print('save raster images') plt.close() for rec, population, model in detectors: spikes = nest.GetStatus(rec, 'events')[0] # Get name of population for p in range(0, len(population_name), 1): if population_name[p]['population'] == population: p_name = population_name[p]['name'] if len(nest.GetStatus(rec)[0]['events']['senders']) > 3: raster = raster_plot.from_device(rec, hist=True) pylab.title( p_name + '_' + model ) f = raster[0].figure f.set_size_inches(15, 9) f.savefig(data_folder + '/spikes_' + p_name + '_' + model + '.png', dpi=100) plt.close() # Set filename and save spike data filename = data_folder + '/spike_' + p_name + '_' + model + '.pickle' pickle.dump(spikes, open(filename, 'w')) scipy.io.savemat(data_folder + '/spike_' + p_name + '_' + model + '.mat', mdict={'senders': spikes['senders'], 'times': spikes['times']}) ''' filename_AMPA = data_folder + 'connection_' + p_name + '_AMPA_syn' + '.dat' filename_NMDA = data_folder + 'connection_' + p_name + '_NMDA_syn' + '.dat' filename_GABAA = data_folder + 'connection_' + p_name + '_GABA_A_syn' + '.dat' filename_GABAB = data_folder + 'connection_' + p_name + '_GABA_B_syn' + '.dat' tp.DumpLayerConnections(population, 'AMPA_syn', filename_AMPA) tp.DumpLayerConnections(population, 'NMDA_syn', filename_NMDA) tp.DumpLayerConnections(population, 'GABA_A_syn', filename_GABAA) tp.DumpLayerConnections(population, 'GABA_B_syn', filename_GABAB) ''' ''' for p in range(0, len(population_name), 1): population = population_name[p]['population'] p_name = population_name[p]['name'] filename_nodes = data_folder + '/gid_' + p_name + '.dat' tp.DumpLayerNodes(population, filename_nodes) ''' network_script = Params['network'] + '.py' shutil.copy2(network_script, data_folder + '/' + network_script) shutil.copy2(network_script, conn_folder + '/' + network_script) print('end')
[e for e in nest.GetStatus([sd_actions[i]], keys="events")[0]["times"] if e > last_action_time] ) # calc the "firerate" of each actor population if rate > max_rate: max_rate = rate # the population with the hightes rate wins chosen_action = i possible_actions = env.actionsAvailable FIRE_RATE_K = 0.5 new_position, outcome, in_end_position = env.move(possible_actions[chosen_action], max_rate * FIRE_RATE_K) nest.SetStatus([sensors["right"]], {"rate": 0.0}) nest.SetStatus([sensors["left"]], {"rate": 0.0}) nest.SetStatus(noise, {"rate": 0.0}) for t in range(5): nest.Simulate(4) time.sleep(0.01) last_action_time += 60 actions_executed += 1 else: state = env.getState().copy() nest.SetStatus([sensors["right"]], {"rate": 0.0}) nest.SetStatus([sensors["left"]], {"rate": 0.0}) nest.SetStatus(noise, {"rate": 0.0}) _, in_end_position = env.init_new_trial() rplt.from_device(sd_all_actions, title="Actions") rplt.from_device(sd_all, title="Difference neurons") rplt.show()
def visualize(self, plots = "hvrs"): """2*2 grid with of 5*1 rows""" n_mcs = self.hc.params["n_minicolumns"] t_sim = self.hc.params["t_sim"] n_bins = 100 bins = np.linspace(0,t_sim,n_bins+1) bin_size =t_sim/n_bins # Spike histograms if "h" in plots: f, axarr= plt.subplots(n_mcs+1,sharex=True) plt.xlabel("Time (ms)") f.subplots_adjust(hspace=0.05) for i, sd in enumerate(self.hc.spikedetectors[::-1]): axarr[i].set_yticks([0,100]) axarr[i].set_ylim([0, 200]) axarr[i].set_xlim([0, t_sim]) axarr[i].xaxis.labelpad = 2 axarr[i].yaxis.labelpad = 2 events = nest.GetStatus([sd],"events")[0] times = events["times"] #self.setTickSize(axarr[i]) if not i == 0: # Om inte inhibitory pop.. norm_factor = 1000.0/(bin_size*self.hc.params["N_E"]) else: # ..som har annat antal neuroner norm_factor = 1000.0/(bin_size*self.hc.params["N_I"]) h_weights = [norm_factor]*len(times) text2 = "%.1f" %(self.hc.spike_statistics[n_mcs-i]) #axarr[i].text(0.85, 0.78, text2, transform = axarr[i].transAxes, fontsize = 10) if i == 0: axarr[i].set_ylim([0, 250]) axarr[i].set_yticks([0,100,200]) text = "(" + str(int(sum(self.hc.inrates)*self.hc.params["p_in_bas"])) +")" #axarr[i].axhspan(0,t_sim, facecolor="grey", alpha =0.3) axarr[i].set_axis_bgcolor("0.90") #axarr[i].xaxis.set_ticks_position("bottom") #axarr[i].yaxis.set_ticks_position("left") else: text = "(" + str(int(self.hc.inrates[n_mcs-i])) + ")" axarr[i].yaxis.set_ticks_position("left") axarr[i].text(1.02, 0.20, text + "\n" + text2, transform = axarr[i].transAxes, fontsize=8) if len(times): axarr[i].hist(times, bins, weights=h_weights, linewidth=0.5) # vikta staplarna for att fa i <Hz> f.text(0.06, 0.5, 'Spike frequency (Hz)', ha='center', va='center', rotation='vertical', fontsize=8) # # Voltage trace plots if "v" in plots: f, axarr= plt.subplots(n_mcs+1,sharex=True) plt.xlabel("Time (ms)") f.subplots_adjust(hspace=0.05) for i, vm in enumerate(self.hc.voltmeters[::-1]): if i == 0: axarr[i].set_axis_bgcolor("0.90") text = "(" + str(int(sum(self.hc.inrates)*self.hc.params["p_in_bas"])) +")" else: text = "(" + str(int(self.hc.inrates[n_mcs-i])) + ")" axarr[i].set_ylim([-5, 22]) axarr[i].set_xlim([0, t_sim]) axarr[i].set_yticks([0,10]) axarr[i].xaxis.labelpad = 2 axarr[i].yaxis.labelpad = 2 #self.setTickSize(axarr[i],10) simple_plots.voltage_trace2(axarr[i], [vm]) axarr[i].yaxis.set_ticks_position("left") axarr[i].text(1.02, 0.4, text, transform = axarr[i].transAxes, fontsize=8) f.text(0.06, 0.5, 'Membrane voltage (mV)', ha='center', va='center', rotation='vertical', fontsize=8) # plt.show() # Raster plots if "r" in plots: f, ax = plt.subplots(1) ax.xaxis.labelpad = 1 plt.xlabel("Time (ms)") all_text = "" for i in range(self.hc.params["n_minicolumns"]+1): if i==0: text = "(" + str(int(sum(self.hc.inrates)*self.hc.params["p_in_bas"])) +")" ax.text(1.02, 0.92, text , transform = ax.transAxes, fontsize=8) else: text = "(" + str(int(self.hc.inrates[n_mcs-i])) + ")"+"\n" all_text += text +"\n\n" ax.text(1.02, -0.1, all_text , transform = ax.transAxes, fontsize=8) ax.set_yticks(np.arange(self.hc.all_pyr[0], self.hc.all_pyr[-1]+1, 30)) ax.grid(True,'major','y',linestyle='-') plt.setp(ax.get_yticklabels() , visible=False) raster_plot.from_device(self.hc.raster_spikedetector, title="") plt.ylim(self.hc.all_pyr[0],self.hc.basket_cells[-1]+0.5) #ax.axhspan(self.hc.basket_cells[-1],self.hc.basket_cells[0]-0.5, facecolor="grey", alpha =0.3) ax.axhspan(self.hc.all_pyr[-1]+0.5,self.hc.basket_cells[-1]+0.5, facecolor="0.9", linewidth=0.5) plt.ylabel("Model neuron id") # Plot over spike distribution if "s" in plots: f, axarr= plt.subplots(n_mcs+1,sharex=False) f.subplots_adjust(hspace=0.1) for m in range(n_mcs+1): spike_statistics_mc, neurons = hcu.spike_frequency_analysis(self.hc, n_mcs-m) std, mean = np.std(spike_statistics_mc), np.mean(spike_statistics_mc) spike_statistics_mc.sort() axarr[m].bar(range(len(spike_statistics_mc)),spike_statistics_mc,linewidth=0.5, width=1.0) l, = axarr[m].plot([0,30],[mean, mean],"--k",linewidth=0.75) l.set_dashes([3,4]) #text = "Spikefrequency: %.2f +/- %.2f" % (mean,std) #axarr[m].text(0.5, 0.7, text, transform = axarr[m].transAxes, fontsize=8) plt.setp(axarr[m].get_xticklabels() , visible=False) axarr[m].yaxis.set_ticks_position("left") axarr[m].xaxis.set_ticks_position("none") axarr[m].set_xlim([0,30]) if m != 0: axarr[m].set_ylim([0, 200]) axarr[m].set_yticks([0,100]) text = "(" + str(int(self.hc.inrates[n_mcs-m])) + ")" else: axarr[m].set_axis_bgcolor("0.90") axarr[m].set_ylim([0, 200]) axarr[m].set_yticks([0,100]) text = "(" + str(int(sum(self.hc.inrates)*self.hc.params["p_in_bas"])) +")" axarr[m].text(1.02, 0.4, text, transform = axarr[m].transAxes, fontsize=8) plt.xlabel("Model neuron id") plt.show()
def simulation(Params): #! ================= #! Import network #! ================= import importlib import time #network_names = ['network_full_keiko', 'network_full_leonardo'] network_names = ['network_full_keiko', 'network_full_keiko'] colors = [[0, 0, 1, .5], [0, 1, 0, .5]] fig, axs = plt.subplots(2, 2) for (inet, netname) in enumerate(network_names): # NEST Kernel and Network settings nest.ResetKernel() nest.ResetNetwork() nest.SetKernelStatus({ "local_num_threads": Params['threads'], 'resolution': Params['resolution'] }) nest.SetStatus([0], {'print_time': True}) # initialize random seed msd = int(round(time.time() * 1000)) nest.SetKernelStatus({'grng_seed': msd}) nest.SetKernelStatus({ 'rng_seeds': range(msd + Params['threads'] + 1, msd + 2 * Params['threads'] + 1) }) network = importlib.import_module(netname) reload(network) models, layers, conns = network.get_Network(Params) # import network_full_keiko # reload(network_full_keiko) # models, layers, conns = network_full_keiko.get_Network(Params) # Create models for m in models: nest.CopyModel(m[0], m[1], m[2]) # Create layers, store layer info in Python variable for l in layers: exec '%s = tp.CreateLayer(l[1])' % l[0] # Create connections, need to insert variable names for c in conns: eval('tp.ConnectLayers(%s,%s,c[2])' % (c[0], c[1])) if Params.has_key('show_V4_num_conn_figure' ) and Params['show_V4_num_conn_figure']: horizontal_nodes = nest.GetLeaves(Vp_horizontal, properties={'model': 'L4_exc'}, local_only=True)[0] vertical_nodes = nest.GetLeaves(Vp_vertical, properties={'model': 'L4_exc'}, local_only=True)[0] print('Ploting #1') n_conns_hor = [] for (idx, horizontal_node) in enumerate(horizontal_nodes): tgt_map = [] this_conns = nest.GetConnections([horizontal_node], horizontal_nodes, synapse_model='AMPA_syn') tgt_map.extend([conn[1] for conn in this_conns]) n_conns_hor.append(len(tgt_map)) plt.axes(axs[0, 0]) plt.hist(n_conns_hor, range(0, max(n_conns_hor + [30])), fc=colors[inet]) plt.title('# of connections Vp(h) L4pyr -> Vp(h) L4Pyr') print('Ploting #2') n_conns_hor = [] for (idx, horizontal_node) in enumerate(horizontal_nodes): tgt_map = [] this_conns = nest.GetConnections([horizontal_node], vertical_nodes, synapse_model='AMPA_syn') tgt_map.extend([conn[1] for conn in this_conns]) n_conns_hor.append(len(tgt_map)) # nest.DisconnectOneToOne(tp_node, tgt_map[0], {"synapse_model": "AMPA_syn"}) #nest.Disconnect([tp_node], tgt_map, 'one_to_one', {"synapse_model": "AMPA_syn"}) plt.axes(axs[0, 1]) plt.hist(n_conns_hor, range(0, max(n_conns_hor + [30])), fc=colors[inet]) plt.title('# of connections Vp(h) L4pyr -> Vp(v) L4Pyr') print('Ploting #3') n_conns_ver = [] for (idx, vertical_node) in enumerate(vertical_nodes): tgt_map = [] this_conns = nest.GetConnections([vertical_node], vertical_nodes, synapse_model='AMPA_syn') tgt_map.extend([conn[1] for conn in this_conns]) n_conns_ver.append(len(tgt_map)) plt.axes(axs[1, 1]) plt.hist(n_conns_ver, range(0, max(n_conns_ver + [30])), fc=colors[inet]) plt.title('# of connections Vp(v) L4pyr -> Vp(v) L4Pyr') print('Ploting #4') n_conns_ver = [] for (idx, vertical_node) in enumerate(vertical_nodes): tgt_map = [] this_conns = nest.GetConnections([vertical_node], horizontal_nodes, synapse_model='AMPA_syn') tgt_map.extend([conn[1] for conn in this_conns]) n_conns_ver.append(len(tgt_map)) plt.axes(axs[1, 0]) plt.hist(n_conns_ver, range(0, max(n_conns_ver + [30])), fc=colors[inet]) plt.title('# of connections Vp(v) L4pyr -> Vp(h) L4Pyr') plt.show() # Check connections # Connections from Retina to TpRelay # tp.PlotTargets(tp.FindCenterElement(Retina_layer), Tp_layer) if Params.has_key('show_V4_connectivity_figure' ) and Params['show_V4_connectivity_figure']: Vp_hor_gids = tp.GetElement(Vp_horizontal, [0, 0]) n_Vp_hor = len(Vp_hor_gids) f = [] for idx in range(n_Vp_hor): f.append(plt.figure()) positions = range(0, 41, 10) positions[-1] -= 1 for xi in range(len(positions)): for yi in range(len(positions)): print("Position [%d,%d] : %d" % (xi, yi, yi * (len(positions)) + xi + 1)) x = positions[xi] y = positions[yi] Vp_hor_gids = tp.GetElement(Vp_horizontal, [x, y]) Vp_hor_status = nest.GetStatus(Vp_hor_gids) for (idx, n) in enumerate(Vp_hor_status): if n['Tau_theta'] == 2.0: print idx try: f[idx].add_subplot(len(positions), len(positions), yi * (len(positions)) + xi + 1) tp.PlotTargets([Vp_hor_gids[idx]], Vp_horizontal, 'L4_exc', 'AMPA_syn', f[idx]) except: print('%i bad' % Vp_hor_gids[idx]) plt.show() # Connections from TpRelay to L4pyr in Vp (horizontally tuned) #topo.PlotTargets(topo.FindCenterElement(Tp), Vp_h, 'L4pyr', 'AMPA') #pylab.title('Connections TpRelay -> Vp(h) L4pyr') #pylab.show() # Connections from TpRelay to L4pyr in Vp (vertically tuned) #topo.PlotTargets(topo.FindCenterElement(Tp), Vp_v, 'L4pyr', 'AMPA') #pylab.title('Connections TpRelay -> Vp(v) L4pyr') #pylab.show() ''' # pablo # Create vertical grating for n in nest.GetLeaves(Retina_layer)[0]: retina_0 = (nest.GetLeaves(Retina_layer)[0])[0] col = (n-retina_0)/Params['Np'] cells_per_degree = Params['Np']/Params['visSize'] cells_per_cycle = cells_per_degree/Params['spatial_frequency'] nest.SetStatus([n], { "phase": col * 360/(cells_per_cycle-1) }) ''' ### keiko if Params['lambda_dg'] >= 0: [ nest.SetStatus( [n], { "phase": phaseInit( tp.GetPosition([n])[0], Params["lambda_dg"], Params["phi_dg"]) }) for n in nest.GetLeaves(Retina_layer)[0] ] else: # Leonardo: Random retina input [ nest.SetStatus( [n], { "phase": phaseInit( tp.GetPosition([n])[0], np.pi * np.random.rand(), np.pi * np.random.rand()) }) for n in nest.GetLeaves(Retina_layer)[0] ] # --------------------------------------------------------------------# # ---------- SET IB NEURONS ----------------------------------------- # # --------------------------------------------------------------------# # 30% of Cortex L56 excitatory neurons are intrinsically bursting(IB) neuron. # That is achieved by setting pacemaker current I_h. # So select 30% of L56_exc neuron, and change h_g_peak from 0.0 to 1.0. # (Other cortical neuron do not have I_h, thus h_g_peak=0.0) L56_vertical_idx = [ nd for nd in nest.GetLeaves(Vp_vertical)[0] if nest.GetStatus([nd], 'model')[0] == 'L56_exc' ] L56_horizontal_idx = [ nd for nd in nest.GetLeaves(Vp_horizontal)[0] if nest.GetStatus([nd], 'model')[0] == 'L56_exc' ] num_neuron = len(L56_vertical_idx) num_ib = int(num_neuron * 0.3) ridx_vertical = np.random.randint(num_neuron, size=(1, num_ib))[0] ridx_horizontal = np.random.randint(num_neuron, size=(1, num_ib))[0] for i in range(1, num_ib, 1): nest.SetStatus([L56_vertical_idx[ridx_vertical[i]]], {'h_g_peak': 1.0}) nest.SetStatus([L56_horizontal_idx[ridx_horizontal[i]]], {'h_g_peak': 1.0}) # initiate network activity #nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'rate': Params['ret_rate']}) nest.SetStatus( nest.GetLeaves(Retina_layer)[0], {'rate': Params['ret_rate']}) nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0}) nest.Simulate(500.0) #! ================= #! Recording devices #! ================= nest.CopyModel( 'multimeter', 'RecordingNode', params={ 'interval': Params['resolution'], #'record_from': ['V_m'], 'record_from': [ 'V_m', 'I_syn_AMPA', 'I_syn_NMDA', 'I_syn_GABA_A', 'I_syn_GABA_B', 'g_AMPA', 'g_NMDA', 'g_GABAA', 'g_GABAB', 'I_NaP', 'I_KNa', 'I_T', 'I_h' ], 'record_to': ['memory'], 'withgid': True, 'withtime': True }) recorders = [] ''' for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Tp_layer , 'Tp_inh'), (Rp_layer , 'Rp'), (Vp_vertical, 'L23_exc'), (Vp_horizontal, 'L23_exc'), (Vp_vertical, 'L23_inh'), (Vp_horizontal, 'L23_inh'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc'), (Vp_vertical, 'L4_inh'), (Vp_horizontal, 'L4_inh'), (Vp_vertical, 'L56_exc'), (Vp_horizontal, 'L56_exc'), (Vp_vertical, 'L56_inh'), (Vp_horizontal, 'L56_inh'), (Vs_vertical, 'L23_exc'), (Vs_horizontal, 'L23_exc'), (Vs_vertical, 'L23_inh'), (Vs_horizontal, 'L23_inh'), (Vs_vertical, 'L4_exc'), (Vs_horizontal, 'L4_exc'), (Vs_vertical, 'L4_inh'), (Vs_horizontal, 'L4_inh'), (Vs_vertical, 'L56_exc'), (Vs_horizontal, 'L56_exc'), (Vs_vertical, 'L56_inh'), (Vs_horizontal, 'L56_inh')]: ''' for population, model in [(Retina_layer, 'Retina'), (Tp_layer, 'Tp_exc'), (Tp_layer, 'Tp_inh'), (Vp_vertical, 'L4_exc'), (Vp_vertical, 'L4_inh'), (Vp_horizontal, 'L4_exc'), (Vp_vertical, 'L23_exc'), (Vp_horizontal, 'L23_exc'), (Vp_vertical, 'L56_exc'), (Rp_layer, 'Rp')]: rec = nest.Create('RecordingNode') recorders.append([rec, population, model]) if (model == 'Retina'): nest.SetStatus(rec, {'record_from': ['rate']}) tgts = [ nd for nd in nest.GetLeaves(population)[0] if nest.GetStatus([nd], 'model')[0] == model ] nest.Connect(rec, tgts) #! ================= #! Spike detector #! ================= detectors = [] ''' for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Tp_layer , 'Tp_inh'), (Rp_layer , 'Rp'), (Vp_vertical, 'L23_exc'), (Vp_horizontal, 'L23_exc'), (Vp_vertical, 'L23_inh'), (Vp_horizontal, 'L23_inh'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc'), (Vp_vertical, 'L4_inh'), (Vp_horizontal, 'L4_inh'), (Vp_vertical, 'L56_exc'), (Vp_horizontal, 'L56_exc'), (Vp_vertical, 'L56_inh'), (Vp_horizontal, 'L56_inh'), (Vs_vertical, 'L23_exc'), (Vs_horizontal, 'L23_exc'), (Vs_vertical, 'L23_inh'), (Vs_horizontal, 'L23_inh'), (Vs_vertical, 'L4_exc'), (Vs_horizontal, 'L4_exc'), (Vs_vertical, 'L4_inh'), (Vs_horizontal, 'L4_inh'), (Vs_vertical, 'L56_exc'), (Vs_horizontal, 'L56_exc'), (Vs_vertical, 'L56_inh'), (Vs_horizontal, 'L56_inh')]: ''' for population, model in [(Retina_layer, 'Retina'), (Tp_layer, 'Tp_exc'), (Tp_layer, 'Tp_inh'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc')]: rec = nest.Create('spike_detector', params={ "withgid": True, "withtime": True }) #rec = nest.Create('spike_detector') detectors.append([rec, population, model]) tgts = [ nd for nd in nest.GetLeaves(population)[0] if nest.GetStatus([nd], 'model')[0] == model ] if model == 'Retina': for t in tgts: try: nest.Connect([t], rec) print('connected %d' % t) except: print('%d did not work' % t) else: nest.Connect(tgts, rec) #! ==================== #! Simulation #! ==================== ''' # change gKL to 0.8 in all populations (necessary to get a little stronger evoked response) for l in layers: sim_elements = l[1]['elements'] for m in np.arange(0,np.size(sim_elements),1): if(np.size(sim_elements)==1): sim_model = sim_elements else: sim_model = sim_elements[m] exec("la = %s" % l[0]) pop = [nd for nd in nest.GetLeaves(la)[0] if nest.GetStatus([nd], 'model')[0]==sim_model] if (l[0]!='Retina_layer'): for cell in pop: nest.SetStatus([cell], {'g_KL':0.8}) ''' # Simulate for t in Params['intervals']: #if (t == 250.0): # Stimulus ON # # if (t == 1500.0): # Stimulus ON # nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 45.0}) #else: # Stimulus OFF # nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0}) if Params['input_flag'] == True: nest.SetStatus( nest.GetLeaves(Retina_layer)[0], {'amplitude': Params['ret_rate']}) else: nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0}) nest.Simulate(t) #! ==================== #! Plot Results #! ==================== if Params.has_key('show_main_figure') and Params['show_main_figure']: print "plotting..." rows = 9 cols = 2 fig = plt.figure() fig.subplots_adjust(hspace=0.4) # Plot A: membrane potential rasters recorded_models = [(Retina_layer, 'Retina'), (Vp_vertical, 'L23_exc'), (Vp_vertical, 'L4_exc'), (Vp_vertical, 'L56_exc'), (Rp_layer, 'Rp'), (Tp_layer, 'Tp_exc')] #plotting.potential_raster(fig,recorders,recorded_models,0,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,0) plotting.potential_raster(fig, recorders, recorded_models, 0, Params['Np'], np.sum(Params['intervals']), Params['resolution'], rows, cols, 0) #starting_neuron = 800+1 #plotting.potential_raster(fig,recorders,recorded_models,starting_neuron,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,0) plt.title('Evoked') # Plot B: individual intracellular traces recorded_models = [(Vp_vertical, 'L4_exc'), (Vp_vertical, 'L4_inh')] #plotting.intracellular_potentials(fig, recorders, recorded_models, 21, rows, cols, 6) #original # keiko total_time = 0.0 for t in Params['intervals']: total_time += t #draw_neuron = (Params['Np']*Params['Np']/2) #plotting.intracellular_potentials(fig, recorders, recorded_models, draw_neuron, rows, cols, 6, total_time) plotting.intracellular_potentials(fig, recorders, recorded_models, 21, rows, cols, 6, total_time) #plotting.intracellular_potentials(fig, recorders, recorded_models, 820, rows, cols, 6, total_time) # Plot C: topographical activity of the vertical and horizontal layers recorded_models = [(Vp_vertical, 'L23_exc')] labels = ["Vertical"] start = 130.0 stop = 140.0 #start = 650.0 #stop = 660.0 plotting.topographic_representation(fig, recorders, recorded_models, labels, Params['Np'], np.sum(Params['intervals']), Params['resolution'], rows, cols, start, stop, 8, 0) recorded_models = [(Vp_horizontal, 'L23_exc')] labels = ["Horizontal"] start = 130.0 stop = 140.0 #start = 650.0 #stop = 660.0 plotting.topographic_representation(fig, recorders, recorded_models, labels, Params['Np'], np.sum(Params['intervals']), Params['resolution'], rows, cols, start, stop, 8, 1) plt.show() # Plot D: movie #labels = ["Evoked_Vp_L23_Vertical","Evoked_Vp_L23_Horizontal"] #recorded_models = [(Vp_vertical,'L23_exc'),(Vp_horizontal,'L23_exc')] #plotting.makeMovie(fig,recorders,recorded_models,labels,Params['Np'],np.sum(Params['intervals']),Params['resolution']) #! ==================== #! Save Results #! ==================== print('save recorders data') # Set folder #rootdir = '/home/kfujii2/newNEST2/ht_model_pablo_based/data/' #expdir = 'random/' # expdir = 'random_full/' # expdir = 'structured_full/' # data_folder = rootdir + expdir data_folder = Params['data_folder'] if not os.path.isdir(data_folder): os.makedirs(data_folder) # To save spike data, set pairs of population id and its name population_name = [{ 'population': Retina_layer, 'name': 'Retina' }, { 'population': Vp_vertical, 'name': 'Vp_v' }, { 'population': Vp_horizontal, 'name': 'Vp_h' }, { 'population': Rp_layer, 'name': 'Rp' }, { 'population': Tp_layer, 'name': 'Tp' }, { 'population': Vs_vertical, 'name': 'Vs_v' }, { 'population': Vs_horizontal, 'name': 'Vs_h' }] for rec, population, model in recorders: # Get name of population for p in range(0, len(population_name), 1): if population_name[p]['population'] == population: p_name = population_name[p]['name'] data = nest.GetStatus(rec)[0]['events'] if model == 'Retina': scipy.io.savemat(data_folder + '/recorder_' + p_name + '_' + model + '.mat', mdict={ 'senders': data['senders'], 'rate': data['rate'] }) else: scipy.io.savemat(data_folder + '/recorder_' + p_name + '_' + model + '.mat', mdict={ 'senders': data['senders'], 'V_m': data['V_m'], 'I_syn_AMPA': data['I_syn_AMPA'], 'I_syn_NMDA': data['I_syn_NMDA'], 'I_syn_GABA_A': data['I_syn_GABA_A'], 'I_syn_GABA_B': data['I_syn_GABA_B'], 'g_AMPA': data['g_AMPA'], 'g_NMDA': data['g_NMDA'], 'g_GABAA': data['g_GABAA'], 'g_GABAB': data['g_GABAB'] }) print('save raster images') plt.close() for rec, population, model in detectors: spikes = nest.GetStatus(rec, 'events')[0] # Get name of population for p in range(0, len(population_name), 1): if population_name[p]['population'] == population: p_name = population_name[p]['name'] if len(nest.GetStatus(rec)[0]['events']['senders']) > 3: raster = raster_plot.from_device(rec, hist=True) pylab.title(p_name + '_' + model) f = raster[0].figure f.set_size_inches(15, 9) f.savefig(data_folder + 'spikes_' + p_name + '_' + model + '.png', dpi=100) plt.close() # Set filename and save spike data filename = data_folder + 'spike_' + p_name + '_' + model + '.pickle' pickle.dump(spikes, open(filename, 'w')) scipy.io.savemat(data_folder + '/spike_' + p_name + '_' + model + '.mat', mdict={ 'senders': spikes['senders'], 'times': spikes['times'] }) ''' filename_AMPA = data_folder + 'connection_' + p_name + '_AMPA_syn' + '.dat' filename_NMDA = data_folder + 'connection_' + p_name + '_NMDA_syn' + '.dat' filename_GABAA = data_folder + 'connection_' + p_name + '_GABA_A_syn' + '.dat' filename_GABAB = data_folder + 'connection_' + p_name + '_GABA_B_syn' + '.dat' tp.DumpLayerConnections(population, 'AMPA_syn', filename_AMPA) tp.DumpLayerConnections(population, 'NMDA_syn', filename_NMDA) tp.DumpLayerConnections(population, 'GABA_A_syn', filename_GABAA) tp.DumpLayerConnections(population, 'GABA_B_syn', filename_GABAB) ''' ''' for p in range(0, len(population_name), 1): population = population_name[p]['population'] p_name = population_name[p]['name'] filename_nodes = data_folder + '/gid_' + p_name + '.dat' tp.DumpLayerNodes(population, filename_nodes) ''' network_script = Params['network'] + '.py' shutil.copy2(network_script, Params['data_folder'] + network_script) print('end')
new_position, outcome, in_end_position = env.move(possible_actions[chosen_action]) nest.SetStatus(wta_noise, {'rate': 0.}) for t in range(4): nest.Simulate(5) time.sleep(0.01) last_action_time += 60 actions_executed += 1 else: position = env.get_agent_pos().copy() _, in_end_position = env.init_new_trial() nest.SetStatus(nest.GetConnections(stimulus, states[position['x']][position['y']]), {'weight': 0.}) rplt.from_device(sd_wta, title="WTA circuit") rplt.from_device(sd_states, title="states") rplt.show() #fig = plt.figure() #plt.xlabel("# action") #plt.ylabel("valence") #plt.title("valence of each action") #ax = fig.add_subplot(111, projection='3d') #x, y = np.meshgrid(range(world_dim['x'] * num_actions), range(NUM_ITERATIONS)) #x = x.flatten() #y = y.flatten() #ax.bar3d(x, y, np.zeros(len(x)), np.ones(len(x)) * 0.5, np.ones(len(x)) * 0.5, np.ravel(values_hist))
Plot membrane potential trace (recorder neurons gray + average in blue) Write your code here -------------------- Write a function or a just a piece of code that plots the membrane traces of the recorded neurons in gray. Calculate the average and plot it in a different color. Please note that svi,tvi,pvi have been already converted into numpy arrays. """ hlp.plot_Vm_traces(svi, tvi, pvi) pylab.xlabel("time(ms)", fontsize=30) pylab.ylabel("potential(mV)", fontsize=30) rplt.from_device(sd_i) """ Plot rate histogram Write your code here -------------------- Calculate the number of spikes emitted by each neuron and store results in a rate vector, which you can then apply hist to """ unique_senders = np.unique(si) rates = np.array([]) for s in unique_senders: rates = np.append(rates, len(np.where(si == s)[0]))
nest.Connect(multimeter, [gids[0]]) start = time.time() nest.Simulate(sim_time) lst_times[j][i] = time.time() - start lst_spikes[j][i] = len(nest.GetStatus(sd)[0]["events"]["senders"]) / sim_time dmm = nest.GetStatus(multimeter)[0] da_voltage = dmm["events"]["V_m"] da_adapt = dmm["events"][lst_record[j]] da_time = dmm["events"]["times"] ax1.plot(da_time,da_voltage,c=cm.hot(j/float(num_models)), label=models[j]) ax1.set_ylabel('Voltage (mV)') ax2.plot(da_time,da_adapt,c=cm.hot(j/float(num_models)), label=models[j]) ax2.set_xlabel('Time (ms)') ax2.set_ylabel(lst_ylabel[j]) from_device(sd, title="Raster for {} neurons of type {}".format(size, model)) fig, (ax1, ax2) = plt.subplots(2,1,sharex=True) for i, model in enumerate(models): ax1.plot(lst_network_sizes, lst_times[i], c=cm.hot(i/float(num_models)), label=model) ax2.scatter(lst_network_sizes, lst_spikes[i], c=cm.hot(i/float(num_models)), label=model) ax2.set_xlabel("Network size") ax1.set_ylabel("Simulation time") ax2.set_ylabel("Number of spikes") ax1.legend(loc=2) ax2.legend(loc=2) plt.show()
import os.path data_folder = './data/detectors' if not os.path.isdir(data_folder): os.makedirs(data_folder) figure_folder = './figures/detectors' if not os.path.isdir(figure_folder): os.makedirs(figure_folder) # save raster plot and data for name, r in detectors.items(): rec = r[0] # raster plot p = raster_plot.from_device(rec, hist=True) f = p[0].figure f.set_size_inches(5, 3) f.savefig(figure_folder + '/spikes_' + name + '.png', dpi=300) # data spikes = nest.GetStatus(rec, "events")[0] print('Saving spikes for ' + name) with open(data_folder + '/spikes_' + name + '.pickle', 'w') as f: pickle.dump(spikes, f) scipy.io.savemat(data_folder + '/spikes_' + name + '.mat', mdict={ 'senders': spikes['senders'], 'times': spikes['times'] })
def simulation(Params): #! ================= #! Import network #! ================= # NEST Kernel and Network settings nest.ResetKernel() nest.ResetNetwork() nest.SetKernelStatus({"local_num_threads": Params['threads'],'resolution': Params['resolution']}) nest.SetStatus([0],{'print_time': True}) import network_full_keiko reload(network_full_keiko) models, layers, conns = network_full_keiko.get_Network(Params) # Create models for m in models: nest.CopyModel(m[0], m[1], m[2]) # Create layers, store layer info in Python variable for l in layers: exec '%s = tp.CreateLayer(l[1])' % l[0] # Create connections, need to insert variable names for c in conns: eval('tp.ConnectLayers(%s,%s,c[2])' % (c[0], c[1])) # --------------------------------------------------------------------# # ---------- SET IB NEURONS ----------------------------------------- # # --------------------------------------------------------------------# # 30% of Cortex L56 excitatory neurons are intrinsically bursting(IB) neuron. # That is achieved by setting pacemaker current I_h. # So select 30% of L56_exc neuron, and change h_g_peak from 0.0 to 1.0. # (Other cortical neuron do not have I_h, thus h_g_peak=0.0) L56_vertical_idx = [nd for nd in nest.GetLeaves(Vp_vertical)[0] if nest.GetStatus([nd], 'model')[0]=='L56_exc'] L56_horizontal_idx = [nd for nd in nest.GetLeaves(Vp_horizontal)[0] if nest.GetStatus([nd], 'model')[0]=='L56_exc'] num_neuron = len(L56_vertical_idx) num_ib = int(num_neuron*0.3) ridx_vertical = np.random.randint(num_neuron, size=(1,num_ib))[0] ridx_horizontal = np.random.randint(num_neuron, size=(1,num_ib))[0] for i in range(1,num_ib,1): nest.SetStatus([L56_vertical_idx[ridx_vertical[i]]], {'h_g_peak': 1.0}) nest.SetStatus([L56_horizontal_idx[ridx_horizontal[i]]], {'h_g_peak': 1.0}) # ============================== # initiate network activity # ============================== #nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'rate': 20.0}) #nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0}) #nest.Simulate(500.0) ''' initiation_frate = 50 initiation_time = 500 for i in range(1, Params['Np']*Params['Np'], 1): tmp_rand nest.Simulate(initiation_time) ''' #! ================= #! Recording devices #! ================= nest.CopyModel('multimeter', 'RecordingNode', params = {'interval' : Params['resolution'], #'record_from': ['V_m'], 'record_from': ['V_m', 'I_syn_AMPA', 'I_syn_NMDA', 'I_syn_GABA_A', 'I_syn_GABA_B', 'g_AMPA', 'g_NMDA', 'g_GABAA', 'g_GABAB', 'I_NaP', 'I_KNa', 'I_T', 'I_h'], 'record_to' : ['memory'], 'withgid' : True, 'withtime' : True}) recorders = [] for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Tp_layer , 'Tp_inh'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc')]: rec = nest.Create('RecordingNode') recorders.append([rec,population,model]) if (model=='Retina'): nest.SetStatus(rec,{'record_from': ['rate']}) tgts = [nd for nd in nest.GetLeaves(population)[0] if nest.GetStatus([nd], 'model')[0]==model] nest.Connect(rec, tgts) #! ================= #! Spike detector #! ================= detectors = [] retina_failed_detectors = [] for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Tp_layer , 'Tp_inh'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc')]: rec = nest.Create('spike_detector', params={"withgid": True, "withtime": True}) #rec = nest.Create('spike_detector') detectors.append([rec,population,model]) tgts = [nd for nd in nest.GetLeaves(population)[0] if nest.GetStatus([nd], 'model')[0]==model] if model == 'Retina': for t in tgts: try: #nest.Connect(rec, [t]) nest.Connect([t], rec) #print('connected %d' % t) except: print('%d did not work' % t) retina_failed_detectors.append(t) else: nest.Connect(tgts, rec) sg = [nd for nd in nest.GetLeaves(Retina_layer)[0] if nest.GetStatus([nd], 'model')[0] == 'Retina'] # ==================== # Set inputs # ==================== retina_spikes = input_util.create_movie_input(Params) num_files = retina_spikes.shape[0] num_retina = retina_spikes.shape[1] if num_retina != Params['Np']*Params['Np']: print('num_retina should be equal as Np*Np') for i in range(0, num_retina, 1): src_firing_times = np.where(retina_spikes.transpose()[i])[0] + 1 firing_times = [] if len(src_firing_times) > 0: for l in range(0, int(Params['intervals'] / num_files) + 1, 1): offset = float(l*num_files) tmp = src_firing_times + offset firing_times = firing_times + tmp.astype(float).tolist() nest.SetStatus([sg[i]], {'spike_times': firing_times}) else: nest.SetStatus([sg[i]], {'spike_times': [1.0]}) ''' for l in range(0, int(Params['intervals'] / num_files) + 1, 1): for i in range(0, num_retina, 1): tmp_spk = nest.GetStatus([sg[i]])[0]['spike_times'] spk = tmp_spk.tolist() spk.append( float(l*num_retina+(i+1)) ) nest.SetStatus([sg[i]],{'spike_times': spk}) ''' #! ==================== #! Initiation #! ==================== #nest.Simulate(num_files) nest.Simulate(500.0) #! ==================== #! Simulation #! ==================== nest.Simulate(Params['intervals']) #! ==================== #! Save Results #! ==================== print('save recorders data') # Set folder #rootdir = '/home/kfujii2/newNEST2/ht_model_pablo_based/data/' #expdir = 'random/' # expdir = 'random_full/' # expdir = 'structured_full/' # data_folder = rootdir + expdir data_folder = Params['data_folder'] if not os.path.isdir(data_folder): os.makedirs(data_folder) # To save spike data, set pairs of population id and its name population_name = [ {'population': Retina_layer, 'name': 'Retina'}, {'population': Vp_vertical, 'name': 'Vp_v'}, {'population': Vp_horizontal, 'name': 'Vp_h'}, {'population': Rp_layer, 'name': 'Rp'}, {'population': Tp_layer, 'name': 'Tp'}, {'population': Vs_vertical, 'name': 'Vs_v'}, {'population': Vs_horizontal, 'name': 'Vs_h'}] for rec, population, model in recorders: # Get name of population for p in range(0, len(population_name), 1): if population_name[p]['population'] == population: p_name = population_name[p]['name'] data = nest.GetStatus(rec)[0]['events'] if model == 'Retina': scipy.io.savemat(data_folder + '/recorder_' + p_name + '_' + model + '.mat', mdict={'senders': data['senders'], 'rate': data['rate']}) else: scipy.io.savemat(data_folder + '/recorder_' + p_name + '_' + model + '.mat', mdict={'senders': data['senders'], 'V_m': data['V_m'], 'I_syn_AMPA': data['I_syn_AMPA'], 'I_syn_NMDA': data['I_syn_NMDA'], 'I_syn_GABA_A': data['I_syn_GABA_A'], 'I_syn_GABA_B': data['I_syn_GABA_B'], 'g_AMPA': data['g_AMPA'], 'g_NMDA': data['g_NMDA'], 'g_GABAA': data['g_GABAA'], 'g_GABAB': data['g_GABAB']} ) print('save raster images') plt.close() for rec, population, model in detectors: spikes = nest.GetStatus(rec, 'events')[0] # Get name of population for p in range(0, len(population_name), 1): if population_name[p]['population'] == population: p_name = population_name[p]['name'] if len(nest.GetStatus(rec)[0]['events']['senders']) > 3: raster = raster_plot.from_device(rec, hist=True) pylab.title( p_name + '_' + model ) f = raster[0].figure f.set_size_inches(15, 9) f.savefig(data_folder + 'spikes_' + p_name + '_' + model + '.png', dpi=100) plt.close() # Set filename and save spike data filename = data_folder + 'spike_' + p_name + '_' + model + '.pickle' pickle.dump(spikes, open(filename, 'w')) scipy.io.savemat(data_folder + '/spike_' + p_name + '_' + model + '.mat', mdict={'senders': spikes['senders'], 'times': spikes['times']}) shutil.copy2('network_full_keiko.py', Params['data_folder'] + 'network_full_keiko.py') shutil.copy2('figure_3_plot.py', Params['data_folder'] + 'figure_3_plot.py') shutil.copy2('main.py', Params['data_folder'] + 'main.py') #scipy.io.savemat(data_folder + '/retina_failed_detectors.mat', mdict={'detectors': retina_failed_detectors}) scipy.io.savemat(data_folder + '/retina_spike_times.mat', mdict={'spike_times': retina_spikes}) print('end')
def simulation(Params): root_folder = Params['root_folder'] if not os.path.isdir(root_folder): os.makedirs(root_folder) net_folder = root_folder + Params['net_folder'] if not os.path.isdir(net_folder): os.makedirs(net_folder) data_folder = net_folder + Params['data_folder'] if not os.path.isdir(data_folder): os.makedirs(data_folder) #! ================= #! Import network #! ================= # NEST Kernel and Network settings nest.ResetKernel() nest.ResetNetwork() nest.SetKernelStatus({"local_num_threads": Params['threads'],'resolution': Params['resolution']}) nest.SetStatus([0],{'print_time': True}) # initialize random seed import time # msd = int(round(time.time() * 1000)) msd = 42 nest.SetKernelStatus({'grng_seed' : msd}) # Tom debug # nest.SetKernelStatus({'rng_seeds' : range(msd+Params['threads']+1, msd+2*Params['threads']+1)}) nest.SetKernelStatus({'rng_seeds': range(msd + Params['threads'] + 1, msd + 2 * Params['threads'] + 1)}) import importlib network = importlib.import_module(Params['network']) reload(network) models, layers, conns = network.get_Network(Params) #import network_full_keiko #reload(network_full_keiko) # models, layers, conns = network_full_keiko.get_Network(Params) # Create models print('Creating models...', end="") for m in models: print('.', end="") # print(m), print('\n') nest.CopyModel(m[0], m[1], m[2]) print(' done.') # Create layers, store layer info in Python variable print('Creating layers...', end="") for l in layers: print('.', end="") exec '%s = tp.CreateLayer(l[1])' % l[0] in globals(), locals() print(' done.') # Create connections, need to insert variable names print('Creating connectiions...', end="") for c in conns: print('.', end="") eval('tp.ConnectLayers(%s,%s,c[2])' % (c[0], c[1])) print(' done.') # Check connections if Params.has_key('show_center_connectivity_figure') and Params['show_center_connectivity_figure']: # this code only gives one element, and you have no control over the # model it comes from... # tp.PlotTargets(tp.FindCenterElement(Vp_horizontal), Vp_horizontal, 'L56_exc', 'AMPA_syn') # tp.PlotTargets(tp.FindCenterElement(Vp_horizontal), Vp_vertical, 'L56_exc', 'AMPA_syn') # tp.PlotTargets(tp.FindCenterElement(Vp_vertical), Vp_horizontal, 'L56_exc', 'AMPA_syn') # tp.PlotTargets(tp.FindCenterElement(Vp_vertical), Vp_vertical, 'L56_exc', 'AMPA_syn') # this way I can get all nodes in the positions, and later filter per Model using GetStatus # IMPORTANT: when layer has even number of neurons per line/column # using center (0,0) makes the function return 4 neurons # per postiion since they all have the same distance. # Using (-0,1, 0,1) solves this problem. # When using odd number perhaps this has to change... for src_label in ['Tp_layer', 'Vp_vertical', 'Vp_horizontal']: for tgt_label in ['Tp_layer', 'Vp_vertical', 'Vp_horizontal']: if src_label == 'Tp_layer' and src_label == tgt_label: continue print('source population %s' % src_label) print('target population %s' % tgt_label) n_plot = 0 f = plt.figure() f.canvas.set_window_title('AMPA Connections: %s -> %s' % (src_label, tgt_label)) all_center = eval('tp.FindNearestElement(%s, (-0.1, 0.1), True)[0]' % src_label) for n in all_center: s = nest.GetStatus([n]) p = tp.GetPosition([n]) # print('%s : (%2.2f, %2.2f)' % (s[0]['model'], p[0][0], p[0][1])) m1 = s[0]['model'].name print('Source neuron model %s' % m1) if m1.find('_exc') > -1: if src_label.find('Tp_') > -1: print( 'found Tp_') # target has to be one of Vp_ or Vs_ models target_models = ['L23_exc', 'L4_exc', 'L56_exc'] elif src_label.find('Vp_') > -1 or src_label.find('Vs') > -1: # if target is Vp_ of Vs_ too, then one of those models if tgt_label.find('Vp_') > -1: target_models = ['L23_exc', 'L4_exc', 'L56_exc'] elif tgt_label.find('Tp_') > -1: # otherwise it has to be a Tp_target target_models = ['Tp_exc'] else: raise ValueError('Invalide target %s for source model: %s' % (tgt_label, src_label)) else: raise ValueError('Invalide source model: %s' % (src_label)) for m2 in target_models: print('Target neuron model %s' % m2) try: get_targets_command = 'tp.GetTargetNodes([n], %s, m2, "AMPA_syn")[0]' % tgt_label print(get_targets_command) targets = eval(get_targets_command) if len(targets) > 0: n_plot += 1 f.add_subplot(3,5,n_plot) eval('tp.PlotTargets([n], %s, m2, "AMPA_syn", f)' % tgt_label) plt.title('%s -> %s' % (m1, m2), fontsize=9) except: print('didnt work') f.savefig(data_folder + '/connectivity_%s_%s.png' % (src_label, tgt_label), dpi=100) if Params.has_key('dry_run') and Params['dry_run']: print('Only generation, loading and ploting network. No actual simulation done.') return ''' # pablo # Create vertical grating for n in nest.GetLeaves(Retina_layer)[0]: retina_0 = (nest.GetLeaves(Retina_layer)[0])[0] col = (n-retina_0)/Params['Np'] cells_per_degree = Params['Np']/Params['visSize'] cells_per_cycle = cells_per_degree/Params['spatial_frequency'] nest.SetStatus([n], { "phase": col * 360/(cells_per_cycle-1) }) ''' ### keiko [nest.SetStatus([n], {"phase": phaseInit(tp.GetPosition([n])[0], Params["lambda_dg"], Params["phi_dg"])}) for n in nest.GetLeaves(Retina_layer)[0]] # --------------------------------------------------------------------# # ---------- SET IB NEURONS ----------------------------------------- # # --------------------------------------------------------------------# # 30% of Cortex L56 excitatory neurons are intrinsically bursting(IB) neuron. # That is achieved by setting pacemaker current I_h. # So select 30% of L56_exc neuron, and change h_g_peak from 0.0 to 1.0. # (Other cortical neuron do not have I_h, thus h_g_peak=0.0) L56_vertical_idx = [nd for nd in nest.GetLeaves(Vp_vertical)[0] if nest.GetStatus([nd], 'model')[0]=='L56_exc'] L56_horizontal_idx = [nd for nd in nest.GetLeaves(Vp_horizontal)[0] if nest.GetStatus([nd], 'model')[0]=='L56_exc'] num_neuron = len(L56_vertical_idx) num_ib = int(num_neuron*0.3) ridx_vertical = np.random.randint(num_neuron, size=(1,num_ib))[0] ridx_horizontal = np.random.randint(num_neuron, size=(1,num_ib))[0] for i in range(1,num_ib,1): nest.SetStatus([L56_vertical_idx[ridx_vertical[i]]], {'g_peak_h': 1.0}) nest.SetStatus([L56_horizontal_idx[ridx_horizontal[i]]], {'g_peak_h': 1.0}) # initiate network activity #nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'rate': Params['ret_rate']}) nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'rate': Params['ret_rate']}) nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0}) nest.Simulate(500.0) #! ================= #! Recording devices #! ================= print('Connecting recorders...', end="") nest.CopyModel('multimeter', 'RecordingNode', params = {'interval' : Params['resolution'], 'record_from': ['V_m'], # Put back when plotting synaptic currents, otherwise makes everything slower for no reason # 'I_syn_AMPA', # 'I_syn_NMDA', # 'I_syn_GABA_A', # 'I_syn_GABA_B', # 'g_AMPA', # 'g_NMDA', # 'g_GABA_A', # 'g_GABA_B'], #'I_NaP', #'I_KNa', #'I_T', #'I_h' #] 'record_to' : ['memory'], 'withgid' : True, 'withtime' : True}) recorders = [] ''' for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Tp_layer , 'Tp_inh'), (Rp_layer , 'Rp'), (Vp_vertical, 'L23_exc'), (Vp_horizontal, 'L23_exc'), (Vp_vertical, 'L23_inh'), (Vp_horizontal, 'L23_inh'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc'), (Vp_vertical, 'L4_inh'), (Vp_horizontal, 'L4_inh'), (Vp_vertical, 'L56_exc'), (Vp_horizontal, 'L56_exc'), (Vp_vertical, 'L56_inh'), (Vp_horizontal, 'L56_inh'), (Vs_vertical, 'L23_exc'), (Vs_horizontal, 'L23_exc'), (Vs_vertical, 'L23_inh'), (Vs_horizontal, 'L23_inh'), (Vs_vertical, 'L4_exc'), (Vs_horizontal, 'L4_exc'), (Vs_vertical, 'L4_inh'), (Vs_horizontal, 'L4_inh'), (Vs_vertical, 'L56_exc'), (Vs_horizontal, 'L56_exc'), (Vs_vertical, 'L56_inh'), (Vs_horizontal, 'L56_inh'), (Vs_cross, 'L23_exc'), (Vs_cross, 'L4_exc'), (Vs_cross, 'L4_exc'), ]: ''' for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Rp_layer , 'Rp'), (Vp_vertical, 'L23_exc'), (Vp_horizontal, 'L23_exc'), (Vp_vertical, 'L23_inh'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc'), (Vp_vertical, 'L4_inh'), (Vp_vertical, 'L56_exc'), (Vp_horizontal, 'L56_exc'), (Vs_vertical, 'L23_exc'), (Vs_horizontal, 'L23_exc'), (Vs_vertical, 'L4_exc'), (Vs_horizontal, 'L4_exc'), (Vs_vertical, 'L56_exc'), (Vs_horizontal, 'L56_exc'), (Vs_cross, 'L23_exc'), (Vs_cross, 'L4_exc'), (Vs_cross, 'L56_exc'), ]: print('.', end="") rec = nest.Create('RecordingNode') recorders.append([rec,population,model]) if (model=='Retina'): nest.SetStatus(rec,{'record_from': ['rate']}) tgts = [nd for nd in nest.GetLeaves(population)[0] if nest.GetStatus([nd], 'model')[0]==model] #nest.Connect(rec, tgts, None, {'delay': recorders_delay}) nest.Connect(rec, tgts) print('done.') #! ================= #! Spike detector #! ================= print('Connecting detectors...', end="") detectors = [] ''' for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Tp_layer , 'Tp_inh'), (Rp_layer , 'Rp'), (Vp_vertical, 'L23_exc'), (Vp_horizontal, 'L23_exc'), (Vp_vertical, 'L23_inh'), (Vp_horizontal, 'L23_inh'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc'), (Vp_vertical, 'L4_inh'), (Vp_horizontal, 'L4_inh'), (Vp_vertical, 'L56_exc'), (Vp_horizontal, 'L56_exc'), (Vp_vertical, 'L56_inh'), (Vp_horizontal, 'L56_inh'), (Vs_vertical, 'L23_exc'), (Vs_horizontal, 'L23_exc'), (Vs_vertical, 'L23_inh'), (Vs_horizontal, 'L23_inh'), (Vs_vertical, 'L4_exc'), (Vs_horizontal, 'L4_exc'), (Vs_vertical, 'L4_inh'), (Vs_horizontal, 'L4_inh'), (Vs_vertical, 'L56_exc'), (Vs_horizontal, 'L56_exc'), (Vs_vertical, 'L56_inh'), (Vs_horizontal, 'L56_inh')]: ''' #Tom for population, model in [(Retina_layer, 'Retina'), (Tp_layer, 'Tp_exc'), (Tp_layer, 'Tp_inh'), (Vp_vertical, 'L23_exc'), (Vp_vertical, 'L4_exc'), (Vp_vertical, 'L56_exc'), (Vp_vertical, 'L23_inh'), (Vp_vertical, 'L4_inh'), (Vp_vertical, 'L56_inh'), (Vs_vertical, 'L23_exc'), (Vs_vertical, 'L23_inh'), (Vs_vertical, 'L4_exc'), (Vs_vertical, 'L4_inh'), (Vs_vertical, 'L56_exc'), (Vs_vertical, 'L56_inh')]: print('.', end="") rec = nest.Create('spike_detector', params={"withgid": True, "withtime": True}) #rec = nest.Create('spike_detector') detectors.append([rec,population,model]) tgts = [nd for nd in nest.GetLeaves(population)[0] if nest.GetStatus([nd], 'model')[0]==model] if model == 'Retina': for t in tgts: try: # nest.Connect([t], rec, None, {'delay': recorders_delay}) nest.Connect([t], rec) print('connected %d' % t) except: print('%d did not work' % t) else: # nest.Connect(tgts, rec, None, {'delay': recorders_delay}) nest.Connect(tgts, rec) print('done.') #! ==================== #! Simulation #! ==================== ''' # change gKL to 0.8 in all populations (necessary to get a little stronger evoked response) for l in layers: sim_elements = l[1]['elements'] for m in np.arange(0,np.size(sim_elements),1): if(np.size(sim_elements)==1): sim_model = sim_elements else: sim_model = sim_elements[m] exec("la = %s" % l[0]) pop = [nd for nd in nest.GetLeaves(la)[0] if nest.GetStatus([nd], 'model')[0]==sim_model] if (l[0]!='Retina_layer'): for cell in pop: nest.SetStatus([cell], {'g_KL':0.8}) ''' # Simulate for t in Params['intervals']: #if (t == 250.0): # Stimulus ON # # if (t == 1500.0): # Stimulus ON # nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 45.0}) #else: # Stimulus OFF # nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0}) if Params['input_flag']==True: nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': Params['ret_rate']}) else: nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0}) nest.Simulate(t) #! ==================== #! Plot Results #! ==================== print("Creating figure 3...") rows = 9 cols = 2 fig = plt.figure(num=None, figsize=(13, 24), dpi=100) fig.subplots_adjust(hspace=0.4) # Plot A: membrane potential rasters recorded_models = [(Retina_layer,'Retina'), (Vp_vertical,'L23_exc'), (Vp_vertical,'L4_exc'), (Vp_vertical,'L56_exc'), (Rp_layer,'Rp'), (Tp_layer,'Tp_exc')] #plotting.potential_raster(fig,recorders,recorded_models,0,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,0) plotting.potential_raster(fig,recorders,recorded_models,0,Params['Np'], np.sum(Params['intervals']), Params['resolution'], rows,cols,0) #starting_neuron = 800+1 #plotting.potential_raster(fig,recorders,recorded_models,starting_neuron,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,0) plt.title('Evoked') # Plot B: individual intracellular traces recorded_models =[(Vp_vertical,'L4_exc'), (Vp_vertical,'L4_inh')] #plotting.intracellular_potentials(fig, recorders, recorded_models, 21, rows, cols, 6) #original # keiko total_time = 0.0 for t in Params['intervals']: total_time += t #draw_neuron = (Params['Np']*Params['Np']/2) #plotting.intracellular_potentials(fig, recorders, recorded_models, draw_neuron, rows, cols, 6, total_time) plotting.intracellular_potentials(fig, recorders, recorded_models, 21, rows, cols, 6, total_time) #plotting.intracellular_potentials(fig, recorders, recorded_models, 820, rows, cols, 6, total_time) # Plot C: topographical activity of the vertical and horizontal layers if Params.has_key('start_membrane_potential') and Params.has_key('end_membrane_potential'): start = Params['start_membrane_potential'] stop = Params['end_membrane_potential'] else: start = 130.0 stop = 140.0 recorded_models = [(Vp_vertical,'L23_exc')] labels = ["Vertical"] plotting.topographic_representation(fig, recorders, recorded_models, labels, Params['Np'], np.sum(Params['intervals']), Params['resolution'], rows, cols, start, stop, 8, 0) recorded_models = [(Vp_horizontal,'L23_exc')] labels = ["Horizontal"] plotting.topographic_representation(fig,recorders,recorded_models,labels,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,start,stop,8,1) if Params.has_key('figure_title'): fig.suptitle(Params['figure_title'], size = 20) fig.savefig(data_folder + '/figure3.png', dpi=100) if Params.has_key('show_main_figure') and Params['show_main_figure']: plt.show() # Plot D: movie #labels = ["Evoked_Vp_L23_Vertical","Evoked_Vp_L23_Horizontal"] #recorded_models = [(Vp_vertical,'L23_exc'),(Vp_horizontal,'L23_exc')] #plotting.makeMovie(fig,recorders,recorded_models,labels,Params['Np'],np.sum(Params['intervals']),Params['resolution']) # Plot F: All areas if Params.has_key('plot_all_regions') and Params['plot_all_regions']: print("Creating plot of all cortical areas") #First column vertical_models = [(Retina_layer,'Retina'), (Vp_vertical,'L23_exc'), (Vp_vertical,'L4_exc'), (Vp_vertical,'L56_exc'), (Vs_vertical,'L23_exc'), (Vs_vertical, 'L4_exc'), (Vs_vertical, 'L56_exc')] #Second column horizontal_models = [(Retina_layer,'Retina'), (Vp_horizontal,'L23_exc'), (Vp_horizontal,'L4_exc'), (Vp_horizontal,'L56_exc'), (Vs_horizontal,'L23_exc'), (Vs_horizontal, 'L4_exc'), (Vs_horizontal, 'L56_exc')] #Third column cross_models = [(Retina_layer,'Retina'), (), (), (), (Vs_cross,'L23_exc'), (Vs_cross, 'L4_exc'), (Vs_cross, 'L56_exc')] #Column labels labels = ['Vertical', 'Horizontal', 'Cross'] #Row labels areas = ['Retina', 'Primary\nL2/3', 'Primary\nL4', 'Primary\nL5/6', 'Secondary\nL2/3', 'Secondary\nL4', 'Secondary\nL4/6'] plotcols = [vertical_models, horizontal_models, cross_models] fig = plotting.potential_raster_multiple_models(fig, recorders, plotcols, labels, areas, 0, Params['Np'], np.sum(Params['intervals']), Params['resolution'], 0) fig.savefig(data_folder + '/figure_all_areas.png', dpi=100) #! ==================== #! Save Results #! ==================== print('save recorders data') # Set folder #rootdir = '/home/kfujii2/newNEST2/ht_model_pablo_based/data/' #expdir = 'random/' # expdir = 'random_full/' # expdir = 'structured_full/' # data_folder = rootdir + expdir # To save spike data, set pairs of population id and its name population_name = [ {'population': Retina_layer, 'name': 'Retina'}, {'population': Vp_vertical, 'name': 'Vp_v'}, {'population': Vp_horizontal, 'name': 'Vp_h'}, {'population': Rp_layer, 'name': 'Rp'}, {'population': Tp_layer, 'name': 'Tp'}, {'population': Vs_vertical, 'name': 'Vs_v'}, {'population': Vs_horizontal, 'name': 'Vs_h'}] if Params.has_key('save_recorders') and Params['save_recorders']: for rec, population, model in recorders: # Get name of population for p in range(0, len(population_name), 1): if population_name[p]['population'] == population: p_name = population_name[p]['name'] data = nest.GetStatus(rec)[0]['events'] if model == 'Retina': scipy.io.savemat(data_folder + '/recorder_' + p_name + '_' + model + '.mat', mdict={'senders': data['senders'], 'rate': data['rate']}) else: scipy.io.savemat(data_folder + '/recorder_' + p_name + '_' + model + '.mat', mdict={'senders': data['senders'], 'times': data['times'], 'V_m': data['V_m'] #, #'I_syn_AMPA': data['I_syn_AMPA'], #'I_syn_NMDA': data['I_syn_NMDA'], #'I_syn_GABA_A': data['I_syn_GABA_A'], #'I_syn_GABA_B': data['I_syn_GABA_B'], # 'g_AMPA': data['g_AMPA'], # 'g_NMDA': data['g_NMDA'], # 'g_GABA_A': data['g_GABA_A'], # 'g_GABA_B': data['g_GABA_B'] } ) print('save raster images') plt.close() for rec, population, model in detectors: spikes = nest.GetStatus(rec, 'events')[0] # Get name of population for p in range(0, len(population_name), 1): if population_name[p]['population'] == population: p_name = population_name[p]['name'] if len(nest.GetStatus(rec)[0]['events']['senders']) > 3: raster = raster_plot.from_device(rec, hist=True) pylab.title( p_name + '_' + model ) f = raster[0].figure f.set_size_inches(15, 9) f.savefig(data_folder + '/spikes_' + p_name + '_' + model + '.png', dpi=100) plt.close() # Set filename and save spike data filename = data_folder + '/spike_' + p_name + '_' + model + '.pickle' pickle.dump(spikes, open(filename, 'w')) scipy.io.savemat(data_folder + '/spike_' + p_name + '_' + model + '.mat', mdict={'senders': spikes['senders'], 'times': spikes['times']}) ''' filename_AMPA = data_folder + 'connection_' + p_name + '_AMPA_syn' + '.dat' filename_NMDA = data_folder + 'connection_' + p_name + '_NMDA_syn' + '.dat' filename_GABAA = data_folder + 'connection_' + p_name + '_GABA_A_syn' + '.dat' filename_GABAB = data_folder + 'connection_' + p_name + '_GABA_B_syn' + '.dat' tp.DumpLayerConnections(population, 'AMPA_syn', filename_AMPA) tp.DumpLayerConnections(population, 'NMDA_syn', filename_NMDA) tp.DumpLayerConnections(population, 'GABA_A_syn', filename_GABAA) tp.DumpLayerConnections(population, 'GABA_B_syn', filename_GABAB) ''' ''' for p in range(0, len(population_name), 1): population = population_name[p]['population'] p_name = population_name[p]['name'] filename_nodes = data_folder + '/gid_' + p_name + '.dat' tp.DumpLayerNodes(population, filename_nodes) ''' network_script = Params['network'] + '.py' shutil.copy2(network_script, data_folder + '/' + network_script) print('end')
def simulation(Params): root_folder = Params['root_folder'] if not os.path.isdir(root_folder): os.makedirs(root_folder) net_folder = root_folder + Params['net_folder'] if not os.path.isdir(net_folder): os.makedirs(net_folder) conn_folder = net_folder + '/connections' if not os.path.isdir(conn_folder): os.makedirs(conn_folder) data_folder = net_folder + Params['data_folder'] if not os.path.isdir(data_folder): os.makedirs(data_folder) #! ================= #! Import network #! ================= # NEST Kernel and Network settings nest.ResetKernel() nest.ResetNetwork() nest.SetKernelStatus({"local_num_threads": Params['threads'],'resolution': Params['resolution']}) nest.SetStatus([0],{'print_time': True}) # initialize random seed import time msd = int(round(time.time() * 1000)) nest.SetKernelStatus({'grng_seed' : msd}) nest.SetKernelStatus({'rng_seeds' : range(msd+Params['threads']+1, msd+2*Params['threads']+1)}) import importlib network = importlib.import_module(Params['network']) reload(network) models, layers, conns = network.get_Network(Params) # TODO this should come from network file synapse_models = ['AMPA_syn', 'NMDA_syn', 'GABA_A_syn', 'GABA_B_syn', 'reticular_projection'] # synapse_models = ['AMPA_syn', 'NMDA_syn', 'GABA_A_syn', 'GABA_B_syn'] # Create models print('Creating models...', end="") for m in models: print('.', end="") # print(m), print('\n') nest.CopyModel(m[0], m[1], m[2]) print(' done.') # Create layers, store layer info in Python variable print('Creating layers...', end="") for l in layers: print('.', end="") exec '%s = tp.CreateLayer(l[1])' % l[0] in globals(), locals() print(' done.') # Create connections, need to insert variable names print('Creating connections...', end="") for c in conns: print('.', end="") eval('tp.ConnectLayers(%s,%s,c[2])' % (c[0], c[1])) print(' done.') # --------------------------------------------------------------------# # ---------- SET IB NEURONS ----------------------------------------- # # --------------------------------------------------------------------# print('Set IB neurons') # 30% of Cortex L56 excitatory neurons are intrinsically bursting(IB) neuron. # That is achieved by setting pacemaker current I_h. # So select 30% of L56_exc neuron, and change h_g_peak from 0.0 to 1.0. # (Other cortical neuron do not have I_h, thus h_g_peak=0.0) L56_vertical_idx = [nd for nd in nest.GetLeaves(Vp_vertical)[0] if nest.GetStatus([nd], 'model')[0]=='L56_exc'] L56_horizontal_idx = [nd for nd in nest.GetLeaves(Vp_horizontal)[0] if nest.GetStatus([nd], 'model')[0]=='L56_exc'] num_neuron = len(L56_vertical_idx) num_ib = int(num_neuron*0.3) ridx_vertical = np.random.randint(num_neuron, size=(1,num_ib))[0] ridx_horizontal = np.random.randint(num_neuron, size=(1,num_ib))[0] for i in range(1,num_ib,1): nest.SetStatus([L56_vertical_idx[ridx_vertical[i]]], {'g_peak_h': 1.0}) nest.SetStatus([L56_horizontal_idx[ridx_horizontal[i]]], {'g_peak_h': 1.0}) # --------------------------------------------------------------------# # ---------- SET RETINA STATIC FIRING RATE -------------------------- # # --------------------------------------------------------------------# print('Set Retina inputs neurons') if not Params['new_image']: #Read with open(Params['image_folder']+Params['image_name']+'.pickle', 'rb') as handle: image_dic = pickle.load(handle) else: image_dic = static_input_utils.create_default_image(Params['new_image_elements'], Params['Np']) if not Params['image_name']=='': static_input_utils.save_new_image_dic(Params['image_folder'] + Params['image_name'], image_dic) luminances = image_dic['luminances'] fig = plt.figure() plt.imshow(luminances, interpolation='nearest') fig.savefig(data_folder + '/input_image.png', dpi=100) if not np.shape(luminances) == (Params['Np'], Params['Np']): raise ValueError('Wrong definition for the input image %s' % (Params['image_folder']+Params['image_name'])) # For each 'pixel' (retina neuron) we set the rate of the poisson generator to maxrate * ret_rate + minrate #if 'automatic_min_rate', minrate is determined so that mean retinal activity is mean_rate #Iterate over indices of image. if Params['automatic_min_rate']: N_on = np.sum(luminances) N_tot = (Params['Np'] ** 2) minrate = (N_tot * Params['mean_rate'] - N_on * Params['ret_rate'] )/ ( N_tot - N_on) else: minrate = Params['ret_rate_baseline'] for i in range(Params['Np']): for j in range(Params['Np']): #Get node, set corresponding luminance currnode = tp.GetElement(Retina_layer, (j, i))[0] #NB: Because of the inconsistency of the GetElement function we have to transpose. if luminances[i,j] > 0.: nest.SetStatus([currnode], {"rate": Params['ret_rate']}) else: nest.SetStatus([currnode], {"rate": minrate}) # --------------------------------------------------------------------# # ---------------------------- INITIATE ---------------------------- # # --------------------------------------------------------------------# print('Simulate %i secs' % Params['initiation_time']) nest.Simulate(Params['initiation_time']) #! ================= #! Recording devices #! ================= print('Connecting recorders...', end="") nest.CopyModel('multimeter', 'RecordingNode', params = {'interval' : Params['resolution'], 'record_from': ['V_m' # Put back when plotting synaptic currents, otherwise makes everything slower for no reason # 'I_syn_AMPA', # 'I_syn_NMDA', # 'I_syn_GABA_A', # 'I_syn_GABA_B', #'g_AMPA', #'g_NMDA', #'g_GABAA', #'g_GABAB', #'I_NaP', #'I_KNa', #'I_T', #'I_h' ], 'record_to' : ['memory'], 'withgid' : True, 'withtime' : True}) recorders = [] for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Rp_layer , 'Rp'), (Vp_vertical, 'L23_exc'), (Vp_horizontal, 'L23_exc'), (Vp_vertical, 'L23_inh'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc'), (Vp_vertical, 'L4_inh'), (Vp_vertical, 'L56_exc'), (Vp_horizontal, 'L56_exc'), (Vs_vertical, 'L23_exc'), (Vs_horizontal, 'L23_exc'), (Vs_vertical, 'L4_exc'), (Vs_horizontal, 'L4_exc'), (Vs_vertical, 'L56_exc'), (Vs_horizontal, 'L56_exc'), (Vs_cross, 'L23_exc'), (Vs_cross, 'L4_exc'), (Vs_cross, 'L56_exc'), ]: rec = nest.Create('RecordingNode') recorders.append([rec,population,model]) if (model=='Retina'): nest.SetStatus(rec,{'record_from': ['rate']}) tgts = [nd for nd in nest.GetLeaves(population)[0] if nest.GetStatus([nd], 'model')[0]==model] nest.Connect(rec, tgts) print('done.') #! ================= #! Spike detector #! ================= print('Connecting detectors...', end="") detectors = [] retina_failed_detectors = [] for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Tp_layer , 'Tp_inh'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc'), (Vs_cross, 'L4_exc')]: rec = nest.Create('spike_detector', params={"withgid": True, "withtime": True}) #rec = nest.Create('spike_detector') detectors.append([rec,population,model]) tgts = [nd for nd in nest.GetLeaves(population)[0] if nest.GetStatus([nd], 'model')[0]==model] if model == 'Retina': for t in tgts: try: # nest.Connect([t], rec, None, {'delay': recorders_delay}) nest.Connect([t], rec) #print('connected %d' % t) except: print('%d did not work' % t) retina_failed_detectors.append(t) else: nest.Connect(tgts, rec) sg = [nd for nd in nest.GetLeaves(Retina_layer)[0] if nest.GetStatus([nd], 'model')[0] == 'Retina'] #! ==================== #! Simulation #! ==================== # Simulate for t in Params['intervals']: # TODO: useless as is # if Params['input_flag']==True: # nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': Params['ret_rate']}) # else: # nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0}) nest.Simulate(t) #! ==================== #! Plot Results #! ==================== print("Creating figure 3...") rows = 9 cols = 2 #Tom: We plot temporal data for the column to which the vertical line in the image is presented #nest.GetLeaves() numbers the elements starting top left and descending vertically. # Therefore starting_neuron (given to plotting.potential_rater) must be the index of the node in the first row. # starting_neuron = 0 plots the first column, starting_neuron = 40 the second, etc vertical_bar_column = image_dic['vertical'][1] starting_neuron_Vp = Params['Np']*vertical_bar_column fig = plt.figure(num=None, figsize=(13, 24), dpi=100) fig.subplots_adjust(hspace=0.4) # Plot A: membrane potential rasters recorded_models = [(Retina_layer,'Retina'), (Vp_vertical,'L23_exc'), (Vp_vertical,'L4_exc'), (Vp_vertical,'L56_exc'), (Rp_layer,'Rp'), (Tp_layer,'Tp_exc')] #plotting.potential_raster(fig,recorders,recorded_models,0,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,0) plotting.potential_raster(fig,recorders,recorded_models,starting_neuron_Vp,Params['Np'], np.sum(Params['intervals']), Params['resolution'], rows,cols,0) #starting_neuron = 800+1 #plotting.potential_raster(fig,recorders,recorded_models,starting_neuron,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,0) plt.title('Evoked') # Plot B: individual intracellular traces recorded_models =[(Vp_vertical,'L4_exc'), (Vp_vertical,'L4_inh')] #plotting.intracellular_potentials(fig, recorders, recorded_models, 21, rows, cols, 6) #original # keiko total_time = 0.0 for t in Params['intervals']: total_time += t #draw_neuron = (Params['Np']*Params['Np']/2) #plotting.intracellular_potentials(fig, recorders, recorded_models, draw_neuron, rows, cols, 6, total_time) plotting.intracellular_potentials(fig, recorders, recorded_models, 21, rows, cols, 6, total_time) #plotting.intracellular_potentials(fig, recorders, recorded_models, 820, rows, cols, 6, total_time) # Plot C: topographical activity of the vertical and horizontal layers if Params.has_key('start_membrane_potential') and Params.has_key('end_membrane_potential'): start = Params['start_membrane_potential'] stop = Params['end_membrane_potential'] else: start = 130.0 stop = 140.0 recorded_models = [(Vp_vertical,'L23_exc')] labels = ["Vertical"] plotting.topographic_representation(fig, recorders, recorded_models, labels, Params['Np'], np.sum(Params['intervals']), Params['resolution'], rows, cols, start, stop, 8, 0) recorded_models = [(Vp_horizontal,'L23_exc')] labels = ["Horizontal"] plotting.topographic_representation(fig,recorders,recorded_models,labels,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,start,stop,8,1) fig.savefig(data_folder + '/figure3.png', dpi=100) if Params.has_key('show_main_figure') and Params['show_main_figure']: plt.show() # Plot C: topographical activity of all layers if Params.has_key('plot_topo_all_regions') and Params['plot_topo_all_regions']: if Params.has_key('start_membrane_potential') and Params.has_key('end_membrane_potential'): start = Params['start_membrane_potential'] stop = Params['end_membrane_potential'] else: start = 130.0 stop = 140.0 ####### USER INPUT # First column vertical_models = [(Retina_layer, 'Retina'), (Vp_vertical, 'L23_exc'), (Vp_vertical, 'L4_exc'), (Vp_vertical, 'L56_exc'), (Vs_vertical, 'L23_exc'), (Vs_vertical, 'L4_exc'), (Vs_vertical, 'L56_exc')] # Second column horizontal_models = [(Retina_layer, 'Retina'), (Vp_horizontal, 'L23_exc'), (Vp_horizontal, 'L4_exc'), (Vp_horizontal, 'L56_exc'), (Vs_horizontal, 'L23_exc'), (Vs_horizontal, 'L4_exc'), (Vs_horizontal, 'L56_exc')] # Third column cross_models = [(Retina_layer, 'Retina'), (), (), (), (Vs_cross, 'L23_exc'), (Vs_cross, 'L4_exc'), (Vs_cross, 'L56_exc')] # Column labels labels = ['Vertical', 'Horizontal', 'Cross'] # Row labels areas = ['Retina', 'Primary\nL2/3', 'Primary\nL4', 'Primary\nL5/6', 'Secondary\nL2/3', 'Secondary\nL4', 'Secondary\nL4/6'] # Number of neurons in each plotted layer: Np, Ns = Params['Np'], Params['Ns'] n_neurons = [Np, Np, Np, Np, Ns, Ns, Ns] recorded_models = [vertical_models, horizontal_models, cross_models] ######## end USER INPUT fig = plotting.all_topographic(recorders, recorded_models, labels, areas, n_neurons, np.sum(Params['intervals']), Params['resolution'], start, stop) fig.savefig(data_folder + '/figure_all_topo.png', dpi=100) if Params.has_key('show_main_figure') and Params['show_main_figure']: plt.show() # Plot F: All areas if Params.has_key('plot_all_regions') and Params['plot_all_regions']: print("Creating plot of all areas") vertical_bar_column_Vp = image_dic['vertical'][1] vertical_bar_column_Vs = vertical_bar_column_Vp * Params['Ns']/Params['Np'] starting_neuron_Vp = Params['Np'] * vertical_bar_column_Vp starting_neuron_Vs = Params['Ns'] * vertical_bar_column_Vs #### USER INPUT vertical_models = [(Retina_layer,'Retina'), (Vp_vertical,'L23_exc'), (Vp_vertical,'L4_exc'), (Vp_vertical,'L56_exc'), (Vs_vertical,'L23_exc'), (Vs_vertical, 'L4_exc'), (Vs_vertical, 'L56_exc')] horizontal_models = [(Retina_layer,'Retina'), (Vp_horizontal,'L23_exc'), (Vp_horizontal,'L4_exc'), (Vp_horizontal,'L56_exc'), (Vs_horizontal,'L23_exc'), (Vs_horizontal, 'L4_exc'), (Vs_horizontal, 'L56_exc')] cross_models = [(Retina_layer,'Retina'), (), (), (), (Vs_cross,'L23_exc'), (Vs_cross, 'L4_exc'), (Vs_cross, 'L56_exc')] labels = ['Vertical', 'Horizontal', 'Cross'] # Row labels areas = ['Retina', 'Primary\nL2/3', 'Primary\nL4', 'Primary\nL5/6', 'Secondary\nL2/3', 'Secondary\nL4', 'Secondary\nL4/6'] #TODO: make this look nicer # Number of neurons in each plotted layer: Np, Ns = Params['Np'], Params['Ns'] n_neurons = [Np, Np, Np, Np, Ns, Ns, Ns] # Starting neuron in each plotted layer: starting_neurons = [starting_neuron_Vp, starting_neuron_Vp, starting_neuron_Vp, starting_neuron_Vp, starting_neuron_Vs, starting_neuron_Vs, starting_neuron_Vs] plotcols = [vertical_models, horizontal_models, cross_models] #### end USER INPUT fig = plotting.potential_raster_multiple_models(fig, recorders, plotcols, labels, areas, starting_neurons, n_neurons, np.sum(Params['intervals']), Params['resolution'], 0) fig.savefig(data_folder + '/figure_all_areas.png', dpi=100) #! ==================== #! Save Results #! ==================== print('save recorders data') # Set folder #rootdir = '/home/kfujii2/newNEST2/ht_model_pablo_based/data/' #expdir = 'random/' # expdir = 'random_full/' # expdir = 'structured_full/' # data_folder = rootdir + expdir # To save spike data, set pairs of population id and its name population_name = [ {'population': Retina_layer, 'name': 'Retina'}, {'population': Vp_vertical, 'name': 'Vp_v'}, {'population': Vp_horizontal, 'name': 'Vp_h'}, {'population': Rp_layer, 'name': 'Rp'}, {'population': Tp_layer, 'name': 'Tp'}, {'population': Vs_vertical, 'name': 'Vs_v'}, {'population': Vs_horizontal, 'name': 'Vs_h'}, {'population': Vs_cross, 'name': 'Vs_c'}] if Params.has_key('save_recorders') and Params['save_recorders']: for rec, population, model in recorders: # Get name of population for p in range(0, len(population_name), 1): if population_name[p]['population'] == population: p_name = population_name[p]['name'] data = nest.GetStatus(rec)[0]['events'] if model == 'Retina': scipy.io.savemat(data_folder + '/recorder_' + p_name + '_' + model + '.mat', mdict={'senders': data['senders'], 'rate': data['rate']}) else: scipy.io.savemat(data_folder + '/recorder_' + p_name + '_' + model + '.mat', mdict={'senders': data['senders'], 'times': data['times'], 'V_m': data['V_m'] #'I_syn_AMPA': data['I_syn_AMPA'], #'I_syn_NMDA': data['I_syn_NMDA'], #'I_syn_GABA_A': data['I_syn_GABA_A'], #'I_syn_GABA_B': data['I_syn_GABA_B'], # 'g_AMPA': data['g_AMPA'], # 'g_NMDA': data['g_NMDA'], # 'g_GABA_A': data['g_GABA_A'], # 'g_GABA_B': data['g_GABA_B'] } ) print('save raster images') plt.close() for rec, population, model in detectors: spikes = nest.GetStatus(rec, 'events')[0] # Get name of population for p in range(0, len(population_name), 1): if population_name[p]['population'] == population: p_name = population_name[p]['name'] if len(nest.GetStatus(rec)[0]['events']['senders']) > 3: raster = raster_plot.from_device(rec, hist=True) pylab.title( p_name + '_' + model ) f = raster[0].figure f.set_size_inches(15, 9) f.savefig(data_folder + '/spikes_' + p_name + '_' + model + '.png', dpi=100) plt.close() # Set filename and save spike data filename = data_folder + '/spike_' + p_name + '_' + model + '.pickle' pickle.dump(spikes, open(filename, 'w')) scipy.io.savemat(data_folder + '/spike_' + p_name + '_' + model + '.mat', mdict={'senders': spikes['senders'], 'times': spikes['times']}) ''' filename_AMPA = data_folder + 'connection_' + p_name + '_AMPA_syn' + '.dat' filename_NMDA = data_folder + 'connection_' + p_name + '_NMDA_syn' + '.dat' filename_GABAA = data_folder + 'connection_' + p_name + '_GABA_A_syn' + '.dat' filename_GABAB = data_folder + 'connection_' + p_name + '_GABA_B_syn' + '.dat' tp.DumpLayerConnections(population, 'AMPA_syn', filename_AMPA) tp.DumpLayerConnections(population, 'NMDA_syn', filename_NMDA) tp.DumpLayerConnections(population, 'GABA_A_syn', filename_GABAA) tp.DumpLayerConnections(population, 'GABA_B_syn', filename_GABAB) ''' ''' for p in range(0, len(population_name), 1): population = population_name[p]['population'] p_name = population_name[p]['name'] filename_nodes = data_folder + '/gid_' + p_name + '.dat' tp.DumpLayerNodes(population, filename_nodes) ''' network_script = Params['network'] + '.py' shutil.copy2(network_script, data_folder + '/' + network_script) shutil.copy2(network_script, conn_folder + '/' + network_script) print('end')
nest.SetStatus(proxy_sensory, [{'port_name': 'sensory', 'music_channel': c} for c in range(100)]) nest.SetAcceptableLatency('sensory', 2.0) print("Create devices") sd_sensory = nest.Create("spike_detector", 1) print("Connect") # proxy to sd nest.Connect(proxy_sensory, sd_sensory) print("Simulate") comm.Barrier() nest.Simulate(10000) print("Done") rplt.from_device(sd_sensory) rplt.show()
def simulation(Params): #! ================= #! Import network #! ================= # NEST Kernel and Network settings nest.ResetKernel() nest.ResetNetwork() nest.SetKernelStatus({"local_num_threads": Params['threads'],'resolution': Params['resolution']}) nest.SetStatus([0],{'print_time': True}) # initialize random seed import time msd = int(round(time.time() * 1000)) nest.SetKernelStatus({'grng_seed' : msd}) nest.SetKernelStatus({'rng_seeds' : range(msd+Params['threads']+1, msd+2*Params['threads']+1)}) import importlib network = importlib.import_module(Params['network']) reload(network) models, layers, conns = network.get_Network(Params) #import network_full_keiko #reload(network_full_keiko) # models, layers, conns = network_full_keiko.get_Network(Params) # Create models for m in models: nest.CopyModel(m[0], m[1], m[2]) # Create layers, store layer info in Python variable for l in layers: exec '%s = tp.CreateLayer(l[1])' % l[0] # Create connections, need to insert variable names for c in conns: eval('tp.ConnectLayers(%s,%s,c[2])' % (c[0], c[1])) # Prepare for file IO import glob # --- Set folder information data_folder = Params['data_folder'] if not os.path.isdir(data_folder): os.makedirs(data_folder) # --- To save spike data, set pairs of population id and its name population_name = [ {'population': Retina_layer, 'name': 'Retina'}, {'population': Vp_vertical, 'name': 'Vp_v'}, {'population': Vp_horizontal, 'name': 'Vp_h'}, {'population': Rp_layer, 'name': 'Rp'}, {'population': Tp_layer, 'name': 'Tp'}, {'population': Vs_vertical, 'name': 'Vs_v'}, {'population': Vs_horizontal, 'name': 'Vs_h'}] if Params.has_key('load_connections_from_file') and Params['load_connections_from_file']: # Preparation scramble_populations = [(Vp_vertical, 'Vp_vertical'), (Vp_horizontal, 'Vp_horizontal')] scramble_layers = ['L23_exc', 'L23_inh', 'L4_exc', 'L4_inh', 'L56_exc', 'L56_inh'] #scramble_layers = ['L4_exc'] # Get min &max index of each layer h_min_idx = {} h_max_idx = {} v_min_idx = {} v_max_idx = {} target_neurons = [] for tmp_model in scramble_layers: tmp_h = nest.GetLeaves(Vp_horizontal, properties={'model': tmp_model}, local_only=True)[0] tmp_v = nest.GetLeaves(Vp_vertical, properties={'model': tmp_model}, local_only=True)[0] h_min_idx[tmp_model] = min(tmp_h) h_max_idx[tmp_model] = max(tmp_h) v_min_idx[tmp_model] = min(tmp_v) v_max_idx[tmp_model] = max(tmp_v) target_neurons = target_neurons + range(h_min_idx[tmp_model], h_max_idx[tmp_model]+1) + range(v_min_idx[tmp_model], v_max_idx[tmp_model]+1) # Save intact network information for p in range(0, len(population_name), 1): population = population_name[p]['population'] p_name = population_name[p]['name'] filename_AMPA = data_folder + 'connection_' + p_name + '_AMPA_syn' + '_intact.dat' filename_NMDA = data_folder + 'connection_' + p_name + '_NMDA_syn' + '_intact.dat' filename_GABAA = data_folder + 'connection_' + p_name + '_GABA_A_syn' + '_intact.dat' filename_GABAB = data_folder + 'connection_' + p_name + '_GABA_B_syn' + '_intact.dat' tp.DumpLayerConnections(population, 'AMPA_syn', filename_AMPA) tp.DumpLayerConnections(population, 'NMDA_syn', filename_NMDA) tp.DumpLayerConnections(population, 'GABA_A_syn', filename_GABAA) tp.DumpLayerConnections(population, 'GABA_B_syn', filename_GABAB) # Reset network nest.ResetNetwork() ''' # The following code works, but takes time longer # Get the list of connection_file file_list = glob.glob(data_folder+'connection_*_intact.dat') # Remove a file if the size is zero remove_idx = [] for file_idx in range(0,len(file_list)): intact_filename = file_list[file_idx] fsize=os.path.getsize(intact_filename) if fsize == 0: remove_idx = remove_idx + [file_idx] remove_idx.sort() remove_idx.reverse() for i in remove_idx: del file_list[i] ''' # TODO : put GABA_A, GABA_B and NMDA connection files file_list = [] file_list.append({'filename': data_folder + 'connection_Vp_h_AMPA_syn_intact.dat', 'synapse': 'AMPA'}) file_list.append({'filename': data_folder + 'connection_Vp_v_AMPA_syn_intact.dat', 'synapse': 'AMPA'}) # Do the following procedure for all connection files for file_idx in range(0,len(file_list)): # Set filenames intact_filename = file_list[file_idx]['filename'] receptors = nest.GetDefaults('ht_neuron')['receptor_types'] syn_model = receptors[ file_list[file_idx]['synapse'] ] scrambled_filename = intact_filename.replace('intact', 'scrambled') print(intact_filename) # Get original(intact) connectivity data src_network = np.loadtxt(open(intact_filename,'rb')) np_pre = src_network[:, 0].astype(int) np_post = src_network[:, 1].astype(int) np_w = src_network[:, 2] np_d = src_network[:, 3] if Params['scrambled']: # Preserve the original structure if # -- pre neruons are not in target populations (i.e. scramble_layers) # -- OR # -- post neurons are not in target populations(i.e. scramble_layers) preserved_rows = np.where( ~np.in1d(np_pre,target_neurons) | ~np.in1d(np_post,target_neurons) )[0] preserved_pre = np_pre[preserved_rows] preserved_post = np_post[preserved_rows] preserved_w = np_w[preserved_rows] preserved_d = np_d[preserved_rows] # If len(preserved_rows)==len(np_pre), that means all neurons do not belong to scramble target areas. # If len(preserved_rows) < len(np_pre), that means there are some neurons which need to be scrambled. if len(preserved_rows) > len(np_pre): print('ERROR: preserved_rows should not be larger than np_pre') elif len(preserved_rows) == len(np_pre): scrambled_pre = preserved_pre.tolist() scrambled_post = preserved_post.tolist() scrambled_w = preserved_w.tolist() scrambled_d = preserved_d.tolist() else: # --- len(preserved_rows) < len(np_pre) scrambled_pre = [] scrambled_post = [] scrambled_w = [] scrambled_d = [] for tmp_model_pre in scramble_layers: for tmp_model_post in scramble_layers: # Get row index such that # --- pre_neuron is in "tmp_model_pre" # --- AND # --- post_neuron is in "tmp_model_post" bool_pre_h = np.in1d(np_pre, range(h_min_idx[tmp_model_pre], h_max_idx[tmp_model_pre]+1)) bool_pre_v = np.in1d(np_pre, range(v_min_idx[tmp_model_pre], v_max_idx[tmp_model_pre]+1)) bool_post_h = np.in1d(np_post, range(h_min_idx[tmp_model_post], h_max_idx[tmp_model_post]+1)) bool_post_v = np.in1d(np_post, range(v_min_idx[tmp_model_post], v_max_idx[tmp_model_post]+1)) tmp_rows_pre_h = np.where(bool_pre_h & (bool_post_h|bool_post_v))[0] tmp_rows_pre_v = np.where(bool_pre_v & (bool_post_h|bool_post_v))[0] # Get connectivity data such that pre neuron is in "tmp_model_pre" # --- pre, w and d information should be kept. # --- post index should be scrambled. tmp_pre = np_pre[np.append(tmp_rows_pre_h, tmp_rows_pre_v)].tolist() tmp_w = np_w[np.append(tmp_rows_pre_h, tmp_rows_pre_v)].tolist() tmp_d = np_d[np.append(tmp_rows_pre_h, tmp_rows_pre_v)].tolist() tmp_post = [] num_pre_h = len(tmp_rows_pre_h) num_pre_v = len(tmp_rows_pre_v) # --- pre : population = horizontal, model = "tmp_model_pre" # --- post: population = horizontal(1/2)+vertical(1/2), model = "tmp_model_post" if num_pre_h > 0: # Assign the same number of connections for horizontal population and vertical population num_scrambled_h = int(round(num_pre_h / 2)) num_scrambled_v = num_pre_h - num_scrambled_h # Choose post neuron index randomly scrambled_h_idx = rd.randint(low =h_min_idx[tmp_model_post], high=h_max_idx[tmp_model_post], size=[num_scrambled_h, 1]) scrambled_v_idx = rd.randint(low =v_min_idx[tmp_model_post], high=v_max_idx[tmp_model_post], size=[num_scrambled_v, 1]) # append scrambled post index tmp_post = tmp_post + np.append(scrambled_h_idx, scrambled_v_idx).tolist() # --- pre : population = vertical, model = "tmp_model_pre" # --- post: population = horizontal(1/2)+vertical(1/2), model = "tmp_model_post" if num_pre_v > 0: # Assign the same number of connections for horizontal population and vertical population num_scrambled_h = int(round(num_pre_v / 2)) num_scrambled_v = num_pre_v - num_scrambled_h # Choose post neuron index randomly scrambled_h_idx = rd.randint(low =h_min_idx[tmp_model_post], high=h_max_idx[tmp_model_post], size=[num_scrambled_h, 1]) scrambled_v_idx = rd.randint(low =v_min_idx[tmp_model_post], high=v_max_idx[tmp_model_post], size=[num_scrambled_v, 1]) # append scrambled post index tmp_post = tmp_post + np.append(scrambled_h_idx, scrambled_v_idx).tolist() scrambled_pre = scrambled_pre + tmp_pre scrambled_post = scrambled_post + tmp_post scrambled_w = scrambled_w + tmp_w scrambled_d = scrambled_d +tmp_d # append preserved connection data scrambled_pre = scrambled_pre + preserved_pre.tolist() scrambled_post = scrambled_post + preserved_post.tolist() scrambled_w = scrambled_w + preserved_w.tolist() scrambled_d = scrambled_d + preserved_d.tolist() # Save scrambled_data scrambled_all_data = np.zeros([len(scrambled_pre), 4]) scrambled_all_data[:, 0] = scrambled_pre scrambled_all_data[:, 1] = scrambled_post scrambled_all_data[:, 2] = scrambled_w scrambled_all_data[:, 3] = scrambled_d np.savetxt(scrambled_filename, scrambled_all_data, fmt='%.6f') # Connect con_dict = {'rule': 'one_to_one'} syn_dict = {"model": "ht_synapse", 'receptor_type': syn_model, 'weight': scrambled_w, 'delay': scrambled_d, } nest.Connect(scrambled_pre, scrambled_post, con_dict, syn_dict) else: # just convert data type(ndarray->list) and connect based on the original data pre = np_pre.tolist() post = np_post.tolist() w = np_w.tolist() d = np_d.tolist() # Connect con_dict = {'rule': 'one_to_one'} syn_dict = {"model": "ht_synapse", 'receptor_type': 1, 'weight': w, 'delay': d, } nest.Connect(pre, post, con_dict, syn_dict) # nest.DisconnectOneToOne(tp_node, tgt_map[0], {"synapse_model": "AMPA_syn"}) #nest.Disconnect([tp_node], tgt_map, 'one_to_one', {"synapse_model": "AMPA_syn"}) # Get target nodes for the vertical population # tp_nodes = nest.GetLeaves(Tp_layer, local_only=True)[0] if Params.has_key('show_V4_num_conn_figure') and Params['show_V4_num_conn_figure']: horizontal_nodes = nest.GetLeaves(Vp_horizontal, properties={'model': 'L4_exc'}, local_only=True)[0] vertical_nodes = nest.GetLeaves(Vp_vertical, properties={'model': 'L4_exc'}, local_only=True)[0] n_conns_hor = [] for (idx, horizontal_node) in enumerate(horizontal_nodes): tgt_map = [] this_conns = nest.GetConnections([horizontal_node], horizontal_nodes, synapse_model='AMPA_syn') tgt_map.extend([conn[1] for conn in this_conns]) n_conns_hor.append(len(tgt_map)) plt.figure() plt.hist(n_conns_hor, range(0, max(n_conns_hor + [30]))) plt.title('# of connections Vp(h) L4pyr -> Vp(h) L4Pyr') n_conns_hor = [] for (idx, horizontal_node) in enumerate(horizontal_nodes): tgt_map = [] this_conns = nest.GetConnections([horizontal_node], vertical_nodes, synapse_model='AMPA_syn') tgt_map.extend([conn[1] for conn in this_conns]) n_conns_hor.append(len(tgt_map)) # nest.DisconnectOneToOne(tp_node, tgt_map[0], {"synapse_model": "AMPA_syn"}) #nest.Disconnect([tp_node], tgt_map, 'one_to_one', {"synapse_model": "AMPA_syn"}) plt.figure() plt.hist(n_conns_hor, range(0, max(n_conns_hor + [30]))) plt.title('# of connections Vp(h) L4pyr -> Vp(v) L4Pyr') n_conns_ver = [] for (idx, vertical_node) in enumerate(vertical_nodes): tgt_map = [] this_conns = nest.GetConnections([vertical_node], vertical_nodes, synapse_model='AMPA_syn') tgt_map.extend([conn[1] for conn in this_conns]) n_conns_ver.append(len(tgt_map)) plt.figure() plt.hist(n_conns_ver, range(0, max(n_conns_ver + [30]))) plt.title('# of connections Vp(v) L4pyr -> Vp(v) L4Pyr') n_conns_ver = [] for (idx, vertical_node) in enumerate(vertical_nodes): tgt_map = [] this_conns = nest.GetConnections([vertical_node], horizontal_nodes, synapse_model='AMPA_syn') tgt_map.extend([conn[1] for conn in this_conns]) n_conns_ver.append(len(tgt_map)) plt.figure() plt.hist(n_conns_ver, range(0, max(n_conns_ver + [30]))) plt.title('# of connections Vp(v) L4pyr -> Vp(h) L4Pyr') plt.show() # Check connections # Connections from Retina to TpRelay # tp.PlotTargets(tp.FindCenterElement(Retina_layer), Tp_layer) if Params.has_key('show_V4_connectivity_figure') and Params['show_V4_connectivity_figure']: Vp_hor_gids = tp.GetElement(Vp_horizontal, [0,0]) n_Vp_hor = len(Vp_hor_gids) f = [] for idx in range(n_Vp_hor): f.append(plt.figure()) positions = range(0,41,10) positions[-1] -= 1 for xi in range(len(positions)): for yi in range(len(positions)): print("Position [%d,%d] : %d" %(xi,yi,yi*(len(positions))+xi+1)) x = positions[xi] y = positions[yi] Vp_hor_gids = tp.GetElement(Vp_horizontal, [x,y]) Vp_hor_status = nest.GetStatus(Vp_hor_gids) for (idx, n) in enumerate(Vp_hor_status): if n['Tau_theta'] == 2.0: print idx try: f[idx].add_subplot(len(positions), len(positions), yi*(len(positions))+xi+1) tp.PlotTargets([Vp_hor_gids[idx]], Vp_horizontal, 'L4_exc', 'AMPA_syn', f[idx]) except: print('%i bad' % Vp_hor_gids[idx]) plt.show() # Connections from TpRelay to L4pyr in Vp (horizontally tuned) #topo.PlotTargets(topo.FindCenterElement(Tp), Vp_h, 'L4pyr', 'AMPA') #pylab.title('Connections TpRelay -> Vp(h) L4pyr') #pylab.show() # Connections from TpRelay to L4pyr in Vp (vertically tuned) #topo.PlotTargets(topo.FindCenterElement(Tp), Vp_v, 'L4pyr', 'AMPA') #pylab.title('Connections TpRelay -> Vp(v) L4pyr') #pylab.show() ''' # pablo # Create vertical grating for n in nest.GetLeaves(Retina_layer)[0]: retina_0 = (nest.GetLeaves(Retina_layer)[0])[0] col = (n-retina_0)/Params['Np'] cells_per_degree = Params['Np']/Params['visSize'] cells_per_cycle = cells_per_degree/Params['spatial_frequency'] nest.SetStatus([n], { "phase": col * 360/(cells_per_cycle-1) }) ''' ### keiko if Params['lambda_dg'] >= 0: [nest.SetStatus([n], {"phase": phaseInit(tp.GetPosition([n])[0], Params["lambda_dg"], Params["phi_dg"])}) for n in nest.GetLeaves(Retina_layer)[0]] else: # Leonardo: Random retina input [nest.SetStatus([n], {"phase": phaseInit(tp.GetPosition([n])[0], np.pi * np.random.rand(), np.pi * np.random.rand())}) for n in nest.GetLeaves(Retina_layer)[0]] # --------------------------------------------------------------------# # ---------- SET IB NEURONS ----------------------------------------- # # --------------------------------------------------------------------# # 30% of Cortex L56 excitatory neurons are intrinsically bursting(IB) neuron. # That is achieved by setting pacemaker current I_h. # So select 30% of L56_exc neuron, and change h_g_peak from 0.0 to 1.0. # (Other cortical neuron do not have I_h, thus h_g_peak=0.0) L56_vertical_idx = [nd for nd in nest.GetLeaves(Vp_vertical)[0] if nest.GetStatus([nd], 'model')[0]=='L56_exc'] L56_horizontal_idx = [nd for nd in nest.GetLeaves(Vp_horizontal)[0] if nest.GetStatus([nd], 'model')[0]=='L56_exc'] num_neuron = len(L56_vertical_idx) num_ib = int(num_neuron*0.3) ridx_vertical = np.random.randint(num_neuron, size=(1,num_ib))[0] ridx_horizontal = np.random.randint(num_neuron, size=(1,num_ib))[0] for i in range(1,num_ib,1): nest.SetStatus([L56_vertical_idx[ridx_vertical[i]]], {'h_g_peak': 1.0}) nest.SetStatus([L56_horizontal_idx[ridx_horizontal[i]]], {'h_g_peak': 1.0}) # initiate network activity #nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'rate': Params['ret_rate']}) nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'rate': Params['ret_rate']}) nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0}) nest.Simulate(500.0) #! ================= #! Recording devices #! ================= nest.CopyModel('multimeter', 'RecordingNode', params = {'interval' : Params['resolution'], #'record_from': ['V_m'], 'record_from': ['V_m', 'I_syn_AMPA', 'I_syn_NMDA', 'I_syn_GABA_A', 'I_syn_GABA_B', 'g_AMPA', 'g_NMDA', 'g_GABAA', 'g_GABAB', 'I_NaP', 'I_KNa', 'I_T', 'I_h'], 'record_to' : ['memory'], 'withgid' : True, 'withtime' : True}) recorders = [] ''' for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Tp_layer , 'Tp_inh'), (Rp_layer , 'Rp'), (Vp_vertical, 'L23_exc'), (Vp_horizontal, 'L23_exc'), (Vp_vertical, 'L23_inh'), (Vp_horizontal, 'L23_inh'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc'), (Vp_vertical, 'L4_inh'), (Vp_horizontal, 'L4_inh'), (Vp_vertical, 'L56_exc'), (Vp_horizontal, 'L56_exc'), (Vp_vertical, 'L56_inh'), (Vp_horizontal, 'L56_inh'), (Vs_vertical, 'L23_exc'), (Vs_horizontal, 'L23_exc'), (Vs_vertical, 'L23_inh'), (Vs_horizontal, 'L23_inh'), (Vs_vertical, 'L4_exc'), (Vs_horizontal, 'L4_exc'), (Vs_vertical, 'L4_inh'), (Vs_horizontal, 'L4_inh'), (Vs_vertical, 'L56_exc'), (Vs_horizontal, 'L56_exc'), (Vs_vertical, 'L56_inh'), (Vs_horizontal, 'L56_inh')]: ''' for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Tp_layer , 'Tp_inh'), (Vp_vertical, 'L4_exc'), (Vp_vertical, 'L4_inh'), (Vp_horizontal, 'L4_exc'), (Vp_vertical, 'L23_exc'), (Vp_horizontal, 'L23_exc'), (Vp_vertical, 'L56_exc'), (Rp_layer, 'Rp')]: rec = nest.Create('RecordingNode') recorders.append([rec,population,model]) if (model=='Retina'): nest.SetStatus(rec,{'record_from': ['rate']}) tgts = [nd for nd in nest.GetLeaves(population)[0] if nest.GetStatus([nd], 'model')[0]==model] nest.Connect(rec, tgts) #! ================= #! Spike detector #! ================= detectors = [] ''' for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Tp_layer , 'Tp_inh'), (Rp_layer , 'Rp'), (Vp_vertical, 'L23_exc'), (Vp_horizontal, 'L23_exc'), (Vp_vertical, 'L23_inh'), (Vp_horizontal, 'L23_inh'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc'), (Vp_vertical, 'L4_inh'), (Vp_horizontal, 'L4_inh'), (Vp_vertical, 'L56_exc'), (Vp_horizontal, 'L56_exc'), (Vp_vertical, 'L56_inh'), (Vp_horizontal, 'L56_inh'), (Vs_vertical, 'L23_exc'), (Vs_horizontal, 'L23_exc'), (Vs_vertical, 'L23_inh'), (Vs_horizontal, 'L23_inh'), (Vs_vertical, 'L4_exc'), (Vs_horizontal, 'L4_exc'), (Vs_vertical, 'L4_inh'), (Vs_horizontal, 'L4_inh'), (Vs_vertical, 'L56_exc'), (Vs_horizontal, 'L56_exc'), (Vs_vertical, 'L56_inh'), (Vs_horizontal, 'L56_inh')]: ''' for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Tp_layer , 'Tp_inh'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc')]: rec = nest.Create('spike_detector', params={"withgid": True, "withtime": True}) #rec = nest.Create('spike_detector') detectors.append([rec,population,model]) tgts = [nd for nd in nest.GetLeaves(population)[0] if nest.GetStatus([nd], 'model')[0]==model] if model == 'Retina': for t in tgts: try: nest.Connect([t], rec) print('connected %d' % t) except: print('%d did not work' % t) else: nest.Connect(tgts, rec) #! ==================== #! Simulation #! ==================== ''' # change gKL to 0.8 in all populations (necessary to get a little stronger evoked response) for l in layers: sim_elements = l[1]['elements'] for m in np.arange(0,np.size(sim_elements),1): if(np.size(sim_elements)==1): sim_model = sim_elements else: sim_model = sim_elements[m] exec("la = %s" % l[0]) pop = [nd for nd in nest.GetLeaves(la)[0] if nest.GetStatus([nd], 'model')[0]==sim_model] if (l[0]!='Retina_layer'): for cell in pop: nest.SetStatus([cell], {'g_KL':0.8}) ''' # Simulate for t in Params['intervals']: #if (t == 250.0): # Stimulus ON # # if (t == 1500.0): # Stimulus ON # nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 45.0}) #else: # Stimulus OFF # nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0}) if Params['input_flag']==True: nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': Params['ret_rate']}) else: nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0}) nest.Simulate(t) ''' data_folder = Params['data_folder'] if not os.path.isdir(data_folder): os.makedirs(data_folder) ''' #! ==================== #! Plot Results #! ==================== if Params.has_key('show_main_figure') and Params['show_main_figure']: print "plotting..." rows = 9 cols = 2 fig = plt.figure(num=None, figsize=(13, 24), dpi=100) fig.subplots_adjust(hspace=0.4) # Plot A: membrane potential rasters recorded_models = [(Retina_layer,'Retina'), (Vp_vertical,'L23_exc'), (Vp_vertical,'L4_exc'), (Vp_vertical,'L56_exc'), (Rp_layer,'Rp'), (Tp_layer,'Tp_exc')] #plotting.potential_raster(fig,recorders,recorded_models,0,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,0) plotting.potential_raster(fig,recorders,recorded_models,0,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,0) #starting_neuron = 800+1 #plotting.potential_raster(fig,recorders,recorded_models,starting_neuron,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,0) plt.title('Evoked') # Plot B: individual intracellular traces recorded_models =[(Vp_vertical,'L4_exc'), (Vp_vertical,'L4_inh')] #plotting.intracellular_potentials(fig, recorders, recorded_models, 21, rows, cols, 6) #original # keiko total_time = 0.0 for t in Params['intervals']: total_time += t #draw_neuron = (Params['Np']*Params['Np']/2) #plotting.intracellular_potentials(fig, recorders, recorded_models, draw_neuron, rows, cols, 6, total_time) plotting.intracellular_potentials(fig, recorders, recorded_models, 21, rows, cols, 6, total_time) #plotting.intracellular_potentials(fig, recorders, recorded_models, 820, rows, cols, 6, total_time) # Plot C: topographical activity of the vertical and horizontal layers if Params.has_key('start_membrane_potential') and Params.has_key('end_membrane_potential'): start = Params['start_membrane_potential'] stop = Params['end_membrane_potential'] else: start = 130.0 stop = 140.0 recorded_models = [(Vp_vertical,'L23_exc')] labels = ["Vertical"] plotting.topographic_representation(fig, recorders, recorded_models, labels, Params['Np'], np.sum(Params['intervals']), Params['resolution'], rows, cols, start, stop, 8, 0) recorded_models = [(Vp_horizontal,'L23_exc')] labels = ["Horizontal"] plotting.topographic_representation(fig,recorders,recorded_models,labels,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,start,stop,8,1) fig.savefig(data_folder + 'figure3.png', dpi=100) plt.show() # Plot D: movie #labels = ["Evoked_Vp_L23_Vertical","Evoked_Vp_L23_Horizontal"] #recorded_models = [(Vp_vertical,'L23_exc'),(Vp_horizontal,'L23_exc')] #plotting.makeMovie(fig,recorders,recorded_models,labels,Params['Np'],np.sum(Params['intervals']),Params['resolution']) #! ==================== #! Save Results #! ==================== print('save recorders data') for rec, population, model in recorders: # Get name of population for p in range(0, len(population_name), 1): if population_name[p]['population'] == population: p_name = population_name[p]['name'] data = nest.GetStatus(rec)[0]['events'] if model == 'Retina': scipy.io.savemat(data_folder + '/recorder_' + p_name + '_' + model + '.mat', mdict={'senders': data['senders'], 'rate': data['rate']}) else: scipy.io.savemat(data_folder + '/recorder_' + p_name + '_' + model + '.mat', mdict={'senders': data['senders'], 'V_m': data['V_m'], 'I_syn_AMPA': data['I_syn_AMPA'], 'I_syn_NMDA': data['I_syn_NMDA'], 'I_syn_GABA_A': data['I_syn_GABA_A'], 'I_syn_GABA_B': data['I_syn_GABA_B'], 'g_AMPA': data['g_AMPA'], 'g_NMDA': data['g_NMDA'], 'g_GABAA': data['g_GABAA'], 'g_GABAB': data['g_GABAB']} ) print('save raster images') plt.close() for rec, population, model in detectors: spikes = nest.GetStatus(rec, 'events')[0] # Get name of population for p in range(0, len(population_name), 1): if population_name[p]['population'] == population: p_name = population_name[p]['name'] if len(nest.GetStatus(rec)[0]['events']['senders']) > 3: raster = raster_plot.from_device(rec, hist=True) pylab.title( p_name + '_' + model ) f = raster[0].figure f.set_size_inches(15, 9) f.savefig(data_folder + 'spikes_' + p_name + '_' + model + '.png', dpi=100) plt.close() # Set filename and save spike data filename = data_folder + 'spike_' + p_name + '_' + model + '.pickle' pickle.dump(spikes, open(filename, 'w')) scipy.io.savemat(data_folder + '/spike_' + p_name + '_' + model + '.mat', mdict={'senders': spikes['senders'], 'times': spikes['times']}) #filename_AMPA = data_folder + 'connection_' + p_name + '_AMPA_syn' + '.dat' #tp.DumpLayerConnections(population, 'AMPA_syn', filename_AMPA) ''' filename_AMPA = data_folder + 'connection_' + p_name + '_AMPA_syn' + '.dat' filename_NMDA = data_folder + 'connection_' + p_name + '_NMDA_syn' + '.dat' filename_GABAA = data_folder + 'connection_' + p_name + '_GABA_A_syn' + '.dat' filename_GABAB = data_folder + 'connection_' + p_name + '_GABA_B_syn' + '.dat' tp.DumpLayerConnections(population, 'AMPA_syn', filename_AMPA) tp.DumpLayerConnections(population, 'NMDA_syn', filename_NMDA) tp.DumpLayerConnections(population, 'GABA_A_syn', filename_GABAA) tp.DumpLayerConnections(population, 'GABA_B_syn', filename_GABAB) ''' ''' for p in range(0, len(population_name), 1): population = population_name[p]['population'] p_name = population_name[p]['name'] filename_nodes = data_folder + '/gid_' + p_name + '.dat' tp.DumpLayerNodes(population, filename_nodes) ''' network_script = Params['network'] + '.py' shutil.copy2(network_script, Params['data_folder'] + network_script) print('end')