def getShiftFromViews(v1, v2):
    # Thread pool
    exe = Executors.newFixedThreadPool(
        Runtime.getRuntime().availableProcessors())
    try:
        # PCM: phase correlation matrix
        pcm = PhaseCorrelation2.calculatePCM(
            v1, v2, ArrayImgFactory(FloatType()), FloatType(),
            ArrayImgFactory(ComplexFloatType()), ComplexFloatType(), exe)
        # Minimum image overlap to consider, in pixels
        minOverlap = v1.dimension(0) / 10
        # Returns an instance of PhaseCorrelationPeak2
        peak = PhaseCorrelation2.getShift(pcm, v1, v2, nHighestPeaks,
                                          minOverlap, True, True, exe)
    except Exception, e:
        print e
def getFFTFromView(v, extension, extSize, paddedDimensions, fftSize):
    FFTMethods.dimensionsRealToComplexFast(extSize, paddedDimensions, fftSize)
    fft = ArrayImgFactory(ComplexFloatType()).create(fftSize,
                                                     ComplexFloatType())
    FFT.realToComplex(
        Views.interval(
            PhaseCorrelation2Util.extendImageByFactor(v, extension),
            FFTMethods.paddingIntervalCentered(
                v, FinalInterval(paddedDimensions))), fft, exe)
    return fft
def rescale_uint8(ops, img):
    """
    Rescale input image (imglib2) to full uint8 range
    """
    scale_op = NormalizeScaleRealTypes()
    scale_op.setEnvironment(ops)
    scale_op.initialize()

    out_uint8 = ArrayImgFactory(UnsignedByteType()).create(img)
    ops.convert().imageType(out_uint8, img, scale_op)
    return out_uint8
示例#4
0
def intoSlice(img, xOffset, yOffset):
    stack_slice = ArrayImgFactory(
        img.randomAccess().get().createVariable()).create(
            [canvas_width, canvas_height])
    target = Views.interval(
        stack_slice, [xOffset, yOffset],
        [xOffset + img.dimension(0) - 1, yOffset + img.dimension(1) - 1])
    c1 = target.cursor()
    c2 = img.cursor()
    while c1.hasNext():
        c1.next().set(c2.next())

    return stack_slice
def getShiftFromFFTs(fft1, fft2, v1, v2, minOverlap, nHighestPeaks):
    pcm = PhaseCorrelation2.calculatePCMInPlace(fft1, fft2,
                                                ArrayImgFactory(FloatType()),
                                                FloatType(), exe)
    peak = PhaseCorrelation2.getShift(pcm, v1, v2, nHighestPeaks, minOverlap,
                                      True, True, exe)
    spshift = peak.getSubpixelShift()
    if spshift is not None:
        return spshift.getFloatPosition(0), spshift.getFloatPosition(1)
    else:
        IJ.log('There is a peak.getSubpixelShift issue. sFOV ' + str(sFOV) +
               ' s ' + str(s))
        return None
# Load an RGB or ARGB image
#imp = IJ.openImage("https://imagej.nih.gov/ij/images/leaf.jpg")
imp = IJ.getImage()

# Access its pixel data from an ImgLib2 data structure:
# a RandomAccessibleInterval<ARGBType>
img = IL.wrapRGBA(imp)

# Read out single channels
red = Converters.argbChannel(img, 1)
green = Converters.argbChannel(img, 2)
blue = Converters.argbChannel(img, 3)

# Create an empty image of type FloatType (floating-point values)
# Here, the img is used to read out the interval: the dimensions for the new image
brightness = ArrayImgFactory(FloatType()).create(img)

# Compute the brightness: pick the maximum intensity pixel of every channel
# and then normalize it by dividing by the number of channels
compute(div(maximum([red, green, blue]), 255.0)).into(brightness)

# Show the brightness image
impB = IL.wrap(brightness, imp.getTitle() + " brightness")
impB.show()

# Compute now the image color saturation
saturation = ArrayImgFactory(FloatType()).create(img)
compute(
    let(
        "red",
        red,  # store as directly readable variables (no dictionary lookups)
示例#7
0
r1 = Rectangle(1708, 680, 1792, 1760)
r2 = Rectangle(520, 248, 1660, 1652)
cut1 = Views.zeroMin(
    Views.interval(red, [r1.x, r1.y],
                   [r1.x + r1.width - 1, r1.y + r1.height - 1]))
cut2 = Views.zeroMin(
    Views.interval(red, [r2.x, r2.y],
                   [r2.x + r2.width - 1, r2.y + r2.height - 1]))

# Thread pool
exe = Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors())

try:
    # PCM: phase correlation matrix
    pcm = PhaseCorrelation2.calculatePCM(cut1, cut2,
                                         ArrayImgFactory(FloatType()),
                                         FloatType(),
                                         ArrayImgFactory(ComplexFloatType()),
                                         ComplexFloatType(), exe)

    # Number of phase correlation peaks to check with cross-correlation
    nHighestPeaks = 10

    # Minimum image overlap to consider, in pixels
    minOverlap = cut1.dimension(0) / 10

    # Returns an instance of PhaseCorrelationPeak2
    peak = PhaseCorrelation2.getShift(pcm, cut1, cut2, nHighestPeaks,
                                      minOverlap, True, True, exe)

    print "Translation:", peak.getSubpixelShift()
示例#8
0
)  #IJ.openImage("http://pacific.mpi-cbg.de/samples/first-instar-brain.zip")

# Scale the X,Y axis down to isotropy with the Z axis
cal = imp.getCalibration()
scale2D = cal.pixelWidth / cal.pixelDepth
iso = Compute.inFloats(Scale2D(Red(ImgLib.wrap(imp)), scale2D))
#ImgLib.wrap(iso).show()

# Find peaks by difference of Gaussian
sigma = (cell_diameter / cal.pixelWidth) * scale2D
peaks = DoGPeaks(iso, sigma, sigma * 0.5, minPeak, 1)
print "Found", len(peaks), "peaks"

# Copy ImgLib1 iso image into ImgLib2 copy image
copy = ArrayImgFactory().create(
    [iso.getDimension(0),
     iso.getDimension(1),
     iso.getDimension(2)], FloatType())
c1 = iso.createCursor()
c2 = copy.cursor()
while c1.hasNext():
    c1.fwd()
    c2.fwd()
    c2.get().set(c1.getType().getRealFloat())

#ImageJFunctions.show(copy)

# Measure mean intensity at every peak
sphereFactory = HyperSphereNeighborhood.factory()
radius = 2
intensities1 = []
copy2 = Views.extendValue(copy, FloatType(0))
    width, height = imp.getWidth(), imp.getHeight()
    pixelsU16 = ip.getPixels()
    img = ArrayImgs.unsignedShorts(pixelsU16, [width, height])

# Or creating a new pixel array from scratch
from net.imglib2.img.array import ArrayImgs
from jarray import zeros

pixelsU16 = zeros(512 * 512, 'h')  # 'h' means short[]
img = ArrayImgs.unsignedShorts(pixelsU16, [512, 512])

# 2. With ArrayImgFactory: unnecessary, use ArrayImgs
from net.imglib2.img.array import ArrayImgFactory
from net.imglib2.type.numeric.integer import UnsignedShortType

factoryU16 = ArrayImgFactory(UnsignedShortType())
img = factoryU16.create([512, 512])

# 3. With ArrayImg: low-level, shows how the enchilada is made
from jarray import zeros
import operator
from net.imglib2.img.basictypeaccess.array import ShortArray
from net.imglib2.img.basictypeaccess import ArrayDataAccessFactory
from net.imglib2.img.array import ArrayImgs, ArrayImg

# Dimensions
dimensions = [512, 512]
n_pixels = reduce(operator.mul, dimensions)
# Pixel type
t = UnsignedShortType()
# How many pixels per unit of storage in the native array
示例#10
0
def multiviewDeconvolution(images, blockSizes, PSF_kernels, n_iterations, lambda_val=0.0006, weights=None,
                           filterBlocksForContent=False, PSF_type=PSFTYPE.INDEPENDENT, exe=None, printFn=syncPrint):
  """
  Apply Bayesian-based multi-view deconvolution to the list of images,
  returning the deconvolved image. Uses Stephan Preibisch's library,
  currently available with the BigStitcher Fiji update site.

  images: a list of images, registered and all with the same dimensions.
  blockSizes: how to chop up the volume of each image for parallel processing.
             When None, a single block with the image dimensions is used,
             plus half of the transformed kernel dimensions for that view.
  PSF_kernels: the images containing the point spread function for each input image. Requirement: the dimensions must be an odd number.
  n_iterations: the number of iterations for the deconvolution. A number between 10 and 50 is desirable. The more iterations, the higher the computational cost.
  lambda_val: default is 0.0006 as recommended by Preibisch.
  weights: a list of FloatType images with the weight for every pixel. If None, then all pixels get a value of 1.
  filterBlocksForContent: whether to check before processing a block if the block has any data in it. Default is False.
  PSF_type: defaults to PSFTYPE.INDEPENDENT.
  exe: a thread pool for concurrent execution. If None, a new one is created, using as many threads as CPUs are available.
  printFn: the function to use for printing error messages. Defaults to syncPrint (thread-safe access to the built-in `print` function).

  Returns an imglib2 ArrayImg, or None if something went wrong.
  """

  mvd_exe = exe
  if not exe:
    mvd_exe = newFixedThreadPool() # as many threads as CPUs

  try:
    mvd_weights = weights
    if not weights:
      mvd_weights = repeat(Views.interval(ConstantRandomAccessible(FloatType(1), images[0].numDimensions()), FinalInterval(images[0])))

    for i, PSF_kernel in enumerate(PSF_kernels):
      for d in xrange(PSF_kernel.numDimensions()):
        if 0 == PSF_kernel.dimension(d) % 2:
          printFn("for image at index %i, PSF kernel dimension %i is not odd." % (i, d))
          return None

    if not blockSizes:
      # Whole image dimensions + half of the transformed PSF kernel dimensions
      kernel_max = int(max(PSF_kernel.dimension(d)
                           for d in xrange(PSF_kernel.numDimensions())
                           for PSF_kernel in PSF_kernels) * 2)
      syncPrint("kernel max dimension *2: %i" % kernel_max)
      blockSizes = []
      for image in images:
        blockSizes.append([image.dimension(d) + kernel_max
                           for d in xrange(image.numDimensions())])
        syncPrint("blockSize:" + str(blockSizes[-1]))

    cptf = createFactory(mvd_exe, lambda_val, blockSizes[0]) # TODO which blockSize to give here?
    filterBlocksForContent = False # Run once with True, none were removed
    dviews = [DeconView(mvd_exe, img, weight, PSF_kernel, PSF_type, blockSize, 1, filterBlocksForContent)
              for img, blockSize, weight, PSF_kernel in izip(images, blockSizes, mvd_weights, PSF_kernels)]
    decon = MultiViewDeconvolutionSeq(DeconViews(dviews, mvd_exe), n_iterations, PsiInitBlurredFusedFactory(), cptf, ArrayImgFactory(FloatType()))
    if not decon.initWasSuccessful():
      printFn("Something went wrong initializing MultiViewDeconvolution")
      return None
    else:
      decon.runIterations()
      return decon.getPSI()
  finally:
    # Only shut down the thread pool if it was created here
    if not exe:
      mvd_exe.shutdownNow()
示例#11
0
 def createFactoryFn(exe, lambda_val, blockSize):
   if use_cuda and cuda:
     return ComputeBlockSeqThreadCUDAFactory(exe, MultiViewDeconvolution.minValue, lambda_val, blockSize, cuda, HashMap(idToCudaDevice))
   else:
     return ComputeBlockSeqThreadCPUFactory(exe, MultiViewDeconvolution.minValue, lambda_val, blockSize, ArrayImgFactory(FloatType()))
示例#12
0
  aff.set(*matrix)
  return aff

# Transform the kernel for each view
kernels = [kernel,
           transformPSFKernelToView(kernel, affine3D(matrices["imgB0-imgB1"])),
           transformPSFKernelToView(kernel, affine3D(matrices["imgB0-imgB2"])),
           transformPSFKernelToView(kernel, affine3D(matrices["imgB0-imgB3"]))]

def deconvolve(images, kernels, name, n_iterations):
  # Bayesian-based multi-view deconvolution
  exe = newFixedThreadPool(Runtime.getRuntime().availableProcessors() -2)
  try:
    mylambda = 0.0006
    blockSize = Intervals.dimensionsAsIntArray(images[0]) # [128, 128, 128]
    cptf = ComputeBlockSeqThreadCPUFactory(exe, mylambda, blockSize, ArrayImgFactory(FloatType()))
    psiInitFactory = PsiInitBlurredFusedFactory() # PsiInitAvgPreciseFactory() fails with type mismatch: UnsignedByteType (?) vs FloatType
    weight = Views.interval(ConstantRandomAccessible(FloatType(1), images[0].numDimensions()), FinalInterval(images[0]))
    filterBlocksForContent = False # Run once with True, none were removed
    decon_views = DeconViews([DeconView(exe, img, weight, kernel, PSFTYPE.INDEPENDENT, blockSize, 1, filterBlocksForContent)
                              for img in images],
                             exe)
    #n_iterations = 10
    decon = MultiViewDeconvolutionSeq(decon_views, n_iterations, psiInitFactory, cptf, ArrayImgFactory(FloatType()))
    if not decon.initWasSuccessful():
      print "Something went wrong initializing MultiViewDeconvolution"
    else:
      decon.runIterations()
      img = decon.getPSI()
      imp = IL.wrap(img, name + "_deconvolved_" + str(n_iterations) + "_iterations")
      imp.show()
示例#13
0
def intoImg(pixels):
    img = ArrayImgFactory(UnsignedByteType()).create([4, 4])
    System.arraycopy(pixels, 0,
                     img.update(None).getCurrentStorageArray(), 0, len(pixels))
    return img
示例#14
0
from net.imglib2.img.array import ArrayImgFactory
from net.imglib2.type.numeric.integer import UnsignedByteType, UnsignedShortType
from net.imglib2.util import Intervals

# An 8-bit 256x256x256 volume
img = ArrayImgFactory(UnsignedByteType()).create([256, 256, 256])

# Another image of the same type and dimensions, but empty
img2 = img.factory().create(
    [img.dimension(d) for d in xrange(img.numDimensions())])

# Same, but easier reading of the image dimensions
img3 = img.factory().create(Intervals.dimensionsAsLongArray(img))

# Same, but use an existing img as an Interval from which to read out the dimensions
img4 = img.factory().create(img)

# Now we change the type: same kind of image and same dimensions,
# but crucially a different pixel type (16-bit) via a new ImgFactory
imgShorts = img.factory().imgFactory(UnsignedShortType()).create(img)
def smooth_temporal_gradient(ops, img, sigma_xy, sigma_t, frame_start,
                             frame_end, normalize_output):
    """
    Smooth input image (imglib2 array) xyt with Gaussian and build temporal gradient 
    from frame_start to frame_end
    """

    n = img.numDimensions()
    assert n == 3, "Input data needs to be 3-dimensional, 2D + time"

    dims = [img.dimension(d) for d in range(n)]
    dim_x, dim_y, dim_t = dims

    if frame_end == -1:
        frame_end = dim_t

    if frame_end > dim_t:
        frame_end = dim_t

    assert frame_start < frame_end, "'Frame start' must be smaller than 'Frame end'"

    ## crop image temporally by using a View
    # img_crop = Views.interval(img, [0, 0, frame_start], [dim_x-1, dim_y-1, frame_end-1])

    # or by cropping without view
    img_crop = ops.transform().crop(
        img,
        Intervals.createMinMax(0, 0, frame_start, dim_x - 1, dim_y - 1,
                               frame_end - 1))

    # create output for smoothing
    img_smooth = ArrayImgFactory(FloatType()).create(img_crop)

    # update dimensions (after cropping)
    dims = [img_crop.dimension(d) for d in range(n)]

    # smooth with Gaussian (use mirror as border treatment)
    Gauss3.gauss([sigma_xy, sigma_xy, sigma_t], Views.extendBorder(img_crop),
                 img_smooth)

    # compute gradient along (time) axis 2
    gradient = ArrayImgFactory(FloatType()).create(dims)
    PartialDerivative.gradientBackwardDifference(
        Views.extendBorder(img_smooth), gradient, 2)

    # separate response into growing and shrinking part by thresholding and multiplying that mask
    thresholded = ops.run("threshold.apply", gradient, FloatType(0.))
    mask = ops.convert().float32(thresholded)
    grow = ops.run("math.multiply", gradient, mask)

    # same for shrinking, but negate befor to obtain negative part
    gradient_neg = ops.run("math.multiply", gradient, -1)
    thresholded = ops.run("threshold.apply", gradient_neg, FloatType(0.))
    mask = ops.convert().float32(thresholded)
    shrink = ops.run("math.multiply", gradient, mask)

    # allign growth and shrink by offset of 1 in t dimesnion
    shrink = Views.interval(shrink, [0, 0, 0],
                            [dims[0] - 1, dims[1] - 1, dims[2] - 2])
    grow = Views.interval(grow, [0, 0, 1],
                          [dims[0] - 1, dims[1] - 1, dims[2] - 1])
    img_smooth = Views.interval(img_smooth, [0, 0, 0],
                                [dims[0] - 1, dims[1] - 1, dims[2] - 2])

    # concatenate output
    if normalize_output:
        shrink = rescale_uint8(ops, shrink)
        grow = rescale_uint8(ops, grow)
        img_smooth = rescale_uint8(ops, img_smooth)

    out = Views.stack([shrink, grow, img_smooth])

    # permute channel with time to make time last dim (for back-conversion)
    out = Views.permute(out, 2, 3)

    # crop view 1st time point result (empty since using backwardDifferences)
    out = Views.interval(out, [0, 0, 0, 1],
                         [out.dimension(d) - 1 for d in range(4)])

    # get ImagePlus back and set correct dimensions
    out_imp = IJF.wrap(out, "Grow and shrink")

    # resize IMP now one frame less (see crop view)
    out_imp.setDimensions(3, 1, frame_end - frame_start - 2)
    out_imp.setDisplayMode(IJ.COMPOSITE)
    #    IJ.save(out_imp, "H:/projects/032_loose_speckle/grow_and_shrink_ij.tif")

    return out_imp
示例#16
0
from net.imglib2.algorithm.fft2 import FFT
from net.imglib2.img.display.imagej import ImageJFunctions as IL
from net.imglib2.img.array import ArrayImgFactory
from net.imglib2.type.numeric.complex import ComplexFloatType
from ij import IJ

img = IL.wrap(IJ.getImage())  # a RealType image
imgfft = FFT.realToComplex(img, ArrayImgFactory(ComplexFloatType()))

IL.wrap(imgfft, "fft").show()