def show(title, nuclei, radius, bounds, scale=1.0): points = [RealPoint.wrap([c * scale for c in coords]) for coords in nuclei] interval = FinalInterval([int(b * scale) for b in bounds[0]], [int(b * scale) for b in bounds[1]]) img = virtualPointsRAI(points, radius * scale, interval) imp = showStack(img, title=title) return imp, img, points
def withIcospheres(time_window=None): with open(os.path.join(baseDir, csvFilename), 'r') as csvfile: reader = csv.reader(csvfile, delimiter=',', quotechar='"') header = reader.next() peaks = [RealPoint.wrap(imap(float, peak.split('::'))) for peak in islice(header, 1, None)] # Template icosahedron ico = MeshMaker.createIcosahedron(2, radius) # Share lists of Point3f across all timepoints icos = [MeshMaker.copyTranslated(ico, peak.getFloatPosition(0), peak.getFloatPosition(1) , peak.getFloatPosition(2)) for peak in peaks] # univ = Image3DUniverse(512, 512) instants = TreeMap() # rows = reader if time_window is None else islice(reader, time_window[0], time_window[1]) for row in rows: # Values mapped to 0-1: Color3f takes 3 values in domain [0, 1]. # So: ensure the value is inside [minimum, maximum] range, then rezero by subtracting minimum, and divide by span (maximum - minimum) values = ((min(max(float(v), minimum), maximum) - minimum) / span for v in islice(row, 1, None)) meshes = [CustomTriangleMesh(mesh, Color3f(v, v, v), 0) for v, mesh in izip(values, icos)] ci = ContentInstant(str(row[0])) ci.display(CustomMultiMesh(meshes)) # each mesh has its color ci.setLocked(True) print row[0] instants.put(int(row[0]), ci) print "n instants:", instants.size() univ.addContent(Content("deltaF/F", instants, False)) univ.show() univ.updateStartAndEndTime(0, len(instants) -1)
def withVirtualStack(time_window=None, subsample=None): with open(os.path.join(baseDir, csvFilename), 'r') as csvfile: reader = csv.reader(csvfile, delimiter=',', quotechar='"') header = reader.next() peaks = [ RealPoint.wrap(imap(float, peak.split('::'))) for peak in islice(header, 1, None) ] frames = [ virtualPointsRAI(peaks, radius, interval, inside=to8bitRange( map(float, islice(row, 1, None)))) for row in reader ] if time_window: first, last = time_window frames = frames[first:last + 1] img4D = Views.stack(frames) # Scale by a factor of 'subsample' in every dimension by nearest neighbor, sort of: if subsample: img4D = Views.subsample(img4D, subsample) imp = ImagePlus("deltaF/F", ImageJVirtualStackUnsignedByte.wrap(img4D)) imp.setDimensions(1, img4D.dimension(2), img4D.dimension(3)) imp.setDisplayRange(0, 255) com = CompositeImage(imp, CompositeImage.GRAYSCALE) com.show() univ = Image3DUniverse(512, 512) univ.show() univ.addVoltex(com)
"calibration": calibration, "minPeakValue": 0.2, # determined by hand: the bright peaks "sigmaSmaller": somaDiameter / 4.0, # in calibrated units: 1/4 soma "sigmaLarger": somaDiameter / 2.0, # in calibrated units: 1/2 soma } csv_path = os.path.join( tgtDir, "peaks_somaDiameter=%0.1f_minPeakValue=%0.3f.csv" % (somaDiameter, params["minPeakValue"])) if os.path.exists(csv_path): print "Parsing CSV file %s" % csv_path with open(csv_path, 'r') as csvfile: reader = csv.reader(csvfile, delimiter=',', quotechar="\"") reader.next() # skip first line: the header peaks = [RealPoint.wrap(map(float, coords)) for coords in reader] else: peaks = doGPeaks(max_projection, params) print "Detected %i peaks with somaDiameter %f" % (len(peaks), somaDiameter) if len(peaks) > 0: with open(csv_path, 'w') as csvfile: w = csv.writer(csvfile, delimiter=",", quoting=csv.QUOTE_NONNUMERIC) w.writerow(["x", "y", "z"]) # header for peak in peaks: w.writerow([peak.getFloatPosition(d) for d in xrange(3)])
def measureFluorescence(series_name, img4D, mask=None): csv_fluorescence = os.path.join(srcDir, "%s_fluorescence.csv" % series_name) if not os.path.exists(csv_fluorescence): # Generate projection over time (the img3D) and extract peaks with difference of Gaussian using the params # (Will check if file for projection over time exists and just load it) img3D_filepath = os.path.join( srcDir, "%s_4D-to-3D_max_projection.zip" % series_name) img3D, peaks, spheresRAI, impSpheres = findNucleiByMaxProjection( img4D, params, img3D_filepath, show=True) comp = showAsComposite([wrap(img3D), impSpheres]) # Measure intensity over time, for every peak # by averaging the signal within a radius of each peak. measurement_radius = somaDiameter / 3.0 spheres = [ ClosedWritableSphere([peak.getFloatPosition(d) for d in xrange(3)], measurement_radius) for peak in peaks ] insides = [ Regions.iterable( Views.interval( Views.raster(Masks.toRealRandomAccessible(sphere)), Intervals.largestContainedInterval(sphere))) for sphere in spheres ] count = float(Regions.countTrue(insides[0])) # same for all measurements = [] with open(csv_fluorescence, 'w') as csvfile: w = csv.writer(csvfile, delimiter=",", quotechar='"', quoting=csv.QUOTE_NONNUMERIC) # Header: with peak coordinates w.writerow(["timepoint"] + [ "%.2f::%.2f::%.2f" % tuple(peak.getFloatPosition(d) for d in xrange(3)) for peak in peaks ]) # Each time point for t in xrange(img4D.dimension(3)): img3D = Views.hyperSlice(img4D, 3, t) mean_intensities = array( ((sum(t.get() for t in Regions.sample(inside, img3D)) / count) for inside in insides), 'f') w.writerow([t] + mean_intensities.tolist()) measurements.append(mean_intensities) else: # Parse CSV file with open(csv_fluorescence, 'r') as csvfile: reader = csv.reader(csvfile, delimiter=',', quotechar='"') header = reader.next() # Parse header, containing peak locations peaks = [ RealPoint.wrap(map(float, h.split("::"))) for h in islice(header, 1, None) ] # Parse rows measurements = [map(float, islice(row, 1, None)) for row in reader] return peaks, measurements
# Test whether the first nearest neighbor is the point itself from net.imglib2 import RealPoint, KDTree from net.imglib2.neighborsearch import RadiusNeighborSearchOnKDTree points = [RealPoint.wrap([1.0, 1.0, float(i)]) for i in xrange(10)] tree = KDTree(points, points) search = RadiusNeighborSearchOnKDTree(tree) radius = 3 search.search(RealPoint.wrap([1.0, 1.0, 1.0]), 3, False) # unordered for i in xrange(search.numNeighbors()): print "Point " + str(i), search.getSampler(i).get() # Prints: # Point 0 (1.0,1.0,3.0) # Point 1 (1.0,1.0,4.0) # Point 2 (1.0,1.0,0.0) # Point 3 (1.0,1.0,1.0) # Point 4 (1.0,1.0,2.0) # So yes: the first point is always the query point.
import sys sys.path.append("/home/albert/lab/scripts/python/imagej/IsoView-GCaMP/") from lib.io import readN5 from lib.dogpeaks import createDoG from lib.synthetic import virtualPointsRAI from lib.ui import showStack from net.imglib2 import RealPoint, FinalInterval points = [RealPoint.wrap([255, 255, 255]), RealPoint.wrap([255, 255, 0]), RealPoint.wrap([128, 384, 128])] rai = virtualPointsRAI(points, 70, FinalInterval([512, 512, 512])) imp = showStack(rai, title="test virtualPointsRAI")