示例#1
0
    def Resnet50(self, epochs=100):
        model = resnet50(include_top=False,
                         weight_file=self._weights_file,
                         input_shape=(224, 224, 3))

        last_layer = model.get_layer("avg_pool").output
        x = Flatten(name='flatten')(last_layer)
        x = Dropout(0.3)(x)
        out = Dense(self._nb_classes, activation='softmax', name='fc8')(x)
        train_model = Model(model.input, out)
        train_model.compile(loss='categorical_crossentropy',
                            optimizer=SGD(lr=1e-4, momentum=0.9),
                            metrics=['accuracy'])

        steps_per_epoch = self._train_genrator.n // self._batch_size
        validation_steps = self._vali_generator.n // self._batch_size

        callbacks = [self._checkpoint, self._monitor]

        train_model.fit_generator(self._train_genrator,
                                  steps_per_epoch=steps_per_epoch,
                                  epochs=epochs,
                                  validation_data=self._vali_generator,
                                  validation_steps=validation_steps,
                                  callbacks=callbacks)
示例#2
0
def test():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    # denseNet = models.densenet161(pretrained=True)
    # for param in denseNet.parameters():
    #     param.requires_grad = False
    # net = models.resnet50(num_classes=2)

    # net = models.inception_v3(num_classes=2)
    # net.aux_logits = False

    # net = models.resnet101(pretrained=True)

    # net = MobileNetV2(n_class=3)
    net = resnet50(num_classes=3)
    index = INDEX
    # 训练数据加载
    state_dict = torch.load('D:/models/image-classify/' + net_name + '-' +
                            str(INDEX) + '.pth')
    from collections import OrderedDict
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        # name = k[21:]  # remove `module.`
        name = k[7:]  # remove `module.`
        new_state_dict[name] = v
    # load params
    # model.load_state_dict(new_state_dict, strict=False)
    net.load_state_dict(new_state_dict)
    # for i, para in enumerate(net.parameters()):
    #     if i < 280:
    #         para.requires_grad = False
    #     else:
    #         para.requires_grad = True
    #     print(i)

    net = torch.nn.DataParallel(net)
    net.to(device)

    # 验证数据加载
    transform_val = transforms.Compose([
        transforms.Resize(224),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize(mean=(0.485, 0.456, 0.406),
                             std=(0.229, 0.224, 0.225))
    ])
    dataset_valn = MyDataset(root="./datalist/n-val.txt",
                             transform=transform_val,
                             loader=default_loader)
    dataLoader_valn = torch.utils.data.DataLoader(dataset=dataset_valn,
                                                  batch_size=BATCH_SIZE,
                                                  shuffle=False,
                                                  num_workers=NUMBER_WORK)
    dataset_valp = MyDataset(root="./datalist/p-val.txt",
                             transform=transform_val)
    dataLoader_valp = torch.utils.data.DataLoader(dataset=dataset_valp,
                                                  batch_size=BATCH_SIZE,
                                                  shuffle=False,
                                                  num_workers=NUMBER_WORK)
    dataset_vals = MyDataset(root="./datalist/s-val.txt",
                             transform=transform_val)
    dataLoader_vals = torch.utils.data.DataLoader(dataset=dataset_vals,
                                                  batch_size=BATCH_SIZE,
                                                  shuffle=False,
                                                  num_workers=NUMBER_WORK)

    net.eval()
    acc_val_sumn = 0
    for step_valn, data in enumerate(dataLoader_valn):
        b_x, b_y = data
        b_x, b_y = b_x.to(device), b_y.to(device)
        outs = net(b_x)
        _, predicted = torch.max(outs.data, 1)
        acc_val = float(predicted.eq(b_y.data).cpu().sum()) / float(
            b_y.size(0))
        acc_val_sumn += acc_val

    acc_val_sump = 0
    for step_valp, data in enumerate(dataLoader_valp):
        b_x, b_y = data
        b_x, b_y = b_x.to(device), b_y.to(device)
        outs = net(b_x)
        _, predicted = torch.max(outs.data, 1)
        acc_val1 = float(predicted.eq(b_y.data).cpu().sum()) / float(
            b_y.size(0))
        acc_val_sump += acc_val1

    acc_val_sums = 0
    for step_vals, data in enumerate(dataLoader_vals):
        b_x, b_y = data
        b_x, b_y = b_x.to(device), b_y.to(device)
        outs = net(b_x)
        _, predicted = torch.max(outs.data, 1)
        acc_val1 = float(predicted.eq(b_y.data).cpu().sum()) / float(
            b_y.size(0))
        acc_val_sums += acc_val1

    logger.info('nval_acc: %.6f, pval_acc: %.6f, sval_acc: %.6f' %
                ((acc_val_sumn / float(step_valn + 1)),
                 (acc_val_sump / float(step_valp + 1)),
                 (acc_val_sums / float(step_vals + 1))))
示例#3
0
def classify():
    net = resnet50(num_classes=3)
    # net = MobileNetV2(n_class=3)
    # net = torch.nn.DataParallel(net)
    # net.to(device)
    state_dict = torch.load('D:/models/image-classify/' + net_name + '-' +
                            str(INDEX) + '.pth')
    from collections import OrderedDict
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        name = k[7:]  # remove `module.`
        new_state_dict[name] = v
    # load params
    # model.load_state_dict(new_state_dict, strict=False)
    net.load_state_dict(new_state_dict)
    net.eval()
    # 验证数据加载
    destpath = 'D:\\dataset\\image-classify\\classify'
    root = './datalist/classify.txt'
    # root = './datalist/n-test.txt'

    if not os.path.exists(destpath):
        os.mkdir(destpath)
    f = open(root, 'r')
    imgs = []
    for line in f.readlines():
        try:
            cols = line.strip('\n').rstrip().split()
            path = cols[0]
            imgs.append(path)
        except Exception:
            print(line)
            continue
    transform_val = transforms.Compose([
        transforms.Resize(224),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize(mean=(0.485, 0.456, 0.406),
                             std=(0.229, 0.224, 0.225))
    ])
    dataset_val = MyDataset(root=root, transform=transform_val)
    dataLoader_val = torch.utils.data.DataLoader(dataset=dataset_val,
                                                 batch_size=BATCH_SIZE,
                                                 shuffle=False,
                                                 num_workers=NUMBER_WORK)

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    # denseNet = models.densenet161(pretrained=True)
    # for param in denseNet.parameters():
    #     param.requires_grad = False
    net = torch.nn.DataParallel(net)
    net.to(device)

    acc_val_sum = 0
    for step_val, data in enumerate(dataLoader_val):
        b_x, b_y = data
        b_x, b_y = b_x.to(device), b_y.to(device)
        outs = net(b_x)
        _, predicted = torch.max(outs.data, 1)
        acc_val = float(predicted.eq(b_y.data).cpu().sum()) / float(
            b_y.size(0))
        acc_val_sum += acc_val
        for i in range(len(predicted.data)):
            if predicted.data[i].cpu() != b_y.data[i].cpu():
                class_dir = str(predicted.data[i].cpu().numpy())
                class_dirdest = os.path.join(destpath, class_dir)
                if not os.path.exists(class_dirdest):
                    os.mkdir(class_dirdest)
                basename = os.path.basename(imgs[i + step_val * BATCH_SIZE])
                destimg = os.path.join(class_dirdest, basename)
                if os.path.exists(destimg):
                    shutil.rmtree(destimg)
                shutil.move(os.path.join(imgs[i + step_val * BATCH_SIZE]),
                            os.path.join(class_dirdest))
                # shutil.copy(os.path.join(imgs[i + step_val * BATCH_SIZE]), os.path.join(destpath))
    print('acc: %.6f ' % (acc_val_sum / float(step_val + 1)))
示例#4
0
def train(fine_tuning=False):
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    # denseNet = models.densenet161(pretrained=True)
    # for param in denseNet.parameters():
    #     param.requires_grad = False
    # net = models.resnet50(num_classes=2)

    # net = models.inception_v3(num_classes=2)
    # net.aux_logits = False

    # net = models.resnet101(pretrained=True)

    # net = MobileNetV2(n_class=3)
    net = resnet50(num_classes=3)
    index = 0
    if fine_tuning:
        index = INDEX
        # 训练数据加载
        state_dict = torch.load('D:/models/image-classify/' + net_name + '-' +
                                str(INDEX) + '.pth')
        from collections import OrderedDict
        new_state_dict = OrderedDict()
        for k, v in state_dict.items():
            # name = k[21:]  # remove `module.`
            name = k[7:]  # remove `module.`
            new_state_dict[name] = v
        # load params
        # model.load_state_dict(new_state_dict, strict=False)
        net.load_state_dict(new_state_dict)
        # for i, para in enumerate(net.parameters()):
        #     if i < 280:
        #         para.requires_grad = False
        #     else:
        #         para.requires_grad = True
        #     print(i)
    print(net)
    net = torch.nn.DataParallel(net)
    net.to(device)
    # 损失函数
    loss_fun = torch.nn.CrossEntropyLoss()
    # 优化函数
    optimizer = torch.optim.Adam(net.parameters())
    # 训练数据加载
    transform_train = transforms.Compose([
        transforms.RandomHorizontalFlip(),
        transforms.RandomVerticalFlip(),
        transforms.RandomRotation(90),
        transforms.RandomAffine(15),
        transforms.ColorJitter(brightness=0.3,
                               contrast=0.3,
                               saturation=0.3,
                               hue=0.3),
        transforms.RandomGrayscale(),
        transforms.Resize(256),
        transforms.Pad(3),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize(mean=(0.485, 0.456, 0.406),
                             std=(0.229, 0.224, 0.225))
    ])
    dataset_train = MyDataset(root="./datalist/train.txt",
                              transform=transform_train,
                              loader=resample_loader)
    dataLoader_train = torch.utils.data.DataLoader(dataset=dataset_train,
                                                   batch_size=BATCH_SIZE,
                                                   shuffle=True,
                                                   num_workers=NUMBER_WORK)
    step_out = 500
    epochs = 500
    for epoch in range(epochs):
        net.train()
        loss_sum = 0
        acc_train_sum = 0
        loss_sum_step = 0
        acc_train_sum_step = 0
        for step_train, data in enumerate(dataLoader_train):
            b_x, b_y = data
            b_x, b_y = b_x.to(device), b_y.to(device)
            outs = net(b_x)
            # 一个为最大值,另一个为最大值的索引
            _, predicted = torch.max(outs.data, 1)
            acc_train = float(predicted.eq(b_y.data).cpu().sum()) / float(
                b_y.size(0))
            acc_train_sum += acc_train
            acc_train_sum_step += acc_train
            loss = loss_fun(outs, b_y)
            loss_sum_step += loss.cpu().data.numpy()
            loss_sum += loss.cpu().data.numpy()
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if (step_train + 1) % step_out == 0:
                print('epoch: %d ,step: %d, loss: %.6f, accuracy: %.6f' %
                      ((epoch + index + 1), (step_train + 1),
                       (loss_sum_step / step_out),
                       (acc_train_sum_step / step_out)))
                loss_sum_step = 0
                acc_train_sum_step = 0
        torch.save(
            net.state_dict(), 'D:/models/image-classify/' + net_name + '-' +
            str(index + epoch + 1) + '.pth')
        logger.info('epoch: %d ,trian_loss:  %.6f , train_acc: %.6f' %
                    ((epoch + index + 1), (loss_sum / float(step_train + 1)),
                     (acc_train_sum / float(step_train + 1))))