def top_feature_net_r(input, anchors, inds_inside, num_bases): """ :param input: :param anchors: :param inds_inside: :param num_bases: :return: top_features, top_scores, top_probs, top_deltas, proposals, proposal_scores """ stride=1. #with tf.variable_scope('top-preprocess') as scope: # input = input batch_size, img_height, img_width, img_channel = input.get_shape().as_list() with tf.variable_scope('feature-extract-resnet') as scope: print('build_resnet') block = ResnetBuilder.resnet_tiny(input) # resnet_input = resnet.get_layer('input_1').input # resnet_output = resnet.get_layer('add_7').output # resnet_f = Model(inputs=resnet_input, outputs=resnet_output) # add_7 # # print(resnet_f.summary()) # block = resnet_f(input) block = conv2d_bn_relu(block, num_kernels=128, kernel_size=(1, 1), stride=[1, 1, 1, 1], padding='SAME', name='2') stride = 8 feature = block with tf.variable_scope('predict') as scope: # up = upsample2d(block, factor = 2, has_bias=True, trainable=True, name='1') # up = block kernel_size = config.cfg.TOP_CONV_KERNEL_SIZE print('\ntop_predict kernal_size: {}\n'.format(kernel_size) ) block = conv2d_bn_relu(block, num_kernels=128, kernel_size=(kernel_size, kernel_size), stride=[1, 1, 1, 1], padding='SAME', name='1') block = conv2d_bn_relu(block, num_kernels=128, kernel_size=(kernel_size, kernel_size), stride=[1, 1, 1, 1], padding='SAME', name='2') scores = conv2d(block, num_kernels=2 * num_bases, kernel_size=(1, 1), stride=[1, 1, 1, 1], padding='SAME',name='score') probs = tf.nn.softmax(tf.reshape(scores, [-1, 2]), name='prob') deltas = conv2d(block, num_kernels=4 * num_bases, kernel_size=(1, 1), stride=[1, 1, 1, 1], padding='SAME',name='delta') #<todo> flip to train and test mode nms (e.g. different nms_pre_topn values): use tf.cond with tf.variable_scope('NMS') as scope: #non-max img_scale = 1 rois, roi_scores = tf_rpn_nms( probs, deltas, anchors, inds_inside, stride, img_width, img_height, img_scale, nms_thresh=0.7, min_size=stride, nms_pre_topn=500, nms_post_topn=100, name ='nms') print ('top: scale=%f, stride=%d'%(1./stride, stride)) return feature, scores, probs, deltas, rois, roi_scores, stride
def rgb_feature_net_r(input): #with tf.variable_scope('rgb-preprocess') as scope: # input = input-128 batch_size, img_height, img_width, img_channel = input.get_shape().as_list() with tf.variable_scope('resnet-block-1') as scope: print('build_resnet') block = ResnetBuilder.resnet_tiny(input) block = conv2d_bn_relu(block, num_kernels=128, kernel_size=(1, 1), stride=[1, 1, 1, 1], padding='SAME', name='2') stride = 8 #<todo> feature = upsample2d(block, factor = 4, ...) feature = block print ('rgb : scale=%f, stride=%d'%(1./stride, stride)) return feature, stride
def top_feature_net_r(input, anchors, inds_inside, num_bases, top_last_states=None): """ :param input: :param anchors: :param inds_inside: :param num_bases: :return: top_features, top_scores, top_probs, top_deltas, proposals, proposal_scores """ stride = 1. #with tf.variable_scope('top-preprocess') as scope: # input = input batch_size, img_height, img_width, img_channel = input.get_shape().as_list( ) with tf.variable_scope('feature-extract-resnet') as scope: print('build_resnet') block = ResnetBuilder.resnet_tiny(input) # resnet_input = resnet.get_layer('input_1').input # resnet_output = resnet.get_layer('add_7').output # resnet_f = Model(inputs=resnet_input, outputs=resnet_output) # add_7 # # print(resnet_f.summary()) # block = resnet_f(input) block = conv2d_bn_relu(block, num_kernels=128, kernel_size=(1, 1), stride=[1, 1, 1, 1], padding='SAME', name='2') stride = 8 with tf.variable_scope('memory') as scope: with tf.variable_scope('get_last_channel') as scope: lstm_input = block[:, :, :, 127] ori_shape = lstm_input.get_shape().as_list() # [batch_size, sequence_length_max, vector_size] lstm_input = tf.reshape(lstm_input, [-1, 1, np.prod(ori_shape[1:])]) with tf.variable_scope('lstm') as scope: lstm_cell = rnn.BasicLSTMCell(np.prod(ori_shape[1:])) outputs, top_states = tf.nn.dynamic_rnn( lstm_cell, lstm_input, initial_state=top_last_states, dtype=tf.float32) outputs = tf.reshape(outputs, [-1, ori_shape[1], ori_shape[2]], 'reshape') with tf.variable_scope('merge') as scope: block = tf.concat([ block[:, :, :, 0:127], tf.reshape(outputs, [-1, ori_shape[1], ori_shape[2], 1]) ], 3) with tf.variable_scope('predict') as scope: # up = upsample2d(block, factor = 2, has_bias=True, trainable=True, name='1') # up = block up = conv2d_bn_relu(block, num_kernels=128, kernel_size=(3, 3), stride=[1, 1, 1, 1], padding='SAME', name='2') scores = conv2d(up, num_kernels=2 * num_bases, kernel_size=(1, 1), stride=[1, 1, 1, 1], padding='SAME', name='score') probs = tf.nn.softmax(tf.reshape(scores, [-1, 2]), name='prob') deltas = conv2d(up, num_kernels=4 * num_bases, kernel_size=(1, 1), stride=[1, 1, 1, 1], padding='SAME', name='delta') #<todo> flip to train and test mode nms (e.g. different nms_pre_topn values): use tf.cond with tf.variable_scope('NMS') as scope: #non-max img_scale = 1 rois, roi_scores = tf_rpn_nms(probs, deltas, anchors, inds_inside, stride, img_width, img_height, img_scale, nms_thresh=0.7, min_size=stride, nms_pre_topn=500, nms_post_topn=100, name='nms') #<todo> feature = upsample2d(block, factor = 4, ...) feature = block print('top: scale=%f, stride=%d' % (1. / stride, stride)) return feature, scores, probs, deltas, rois, roi_scores, stride, top_states
def top_feature_net_r(input, anchors, inds_inside, num_bases, top_last_states=None): """ :param input: :param anchors: :param inds_inside: :param num_bases: :return: top_features, top_scores, top_probs, top_deltas, proposals, proposal_scores """ stride=1. #with tf.variable_scope('top-preprocess') as scope: # input = input batch_size, img_height, img_width, img_channel = input.get_shape().as_list() with tf.variable_scope('feature-extract-resnet') as scope: print('build_resnet') block = ResnetBuilder.resnet_tiny(input) # resnet_input = resnet.get_layer('input_1').input # resnet_output = resnet.get_layer('add_7').output # resnet_f = Model(inputs=resnet_input, outputs=resnet_output) # add_7 # # print(resnet_f.summary()) # block = resnet_f(input) block = conv2d_bn_relu(block, num_kernels=128, kernel_size=(1, 1), stride=[1, 1, 1, 1], padding='SAME', name='2') stride = 8 with tf.variable_scope('memory') as scope: with tf.variable_scope('get_last_channel') as scope: lstm_input = block[:,:,:,127] ori_shape = lstm_input.get_shape().as_list() # [batch_size, sequence_length_max, vector_size] lstm_input = tf.reshape(lstm_input, [-1, 1, np.prod(ori_shape[1:])]) with tf.variable_scope('lstm') as scope: lstm_cell = rnn.BasicLSTMCell(np.prod(ori_shape[1:]) ) outputs, top_states = tf.nn.dynamic_rnn(lstm_cell, lstm_input, initial_state=top_last_states, dtype=tf.float32) outputs = tf.reshape(outputs, [-1, ori_shape[1],ori_shape[2]], 'reshape') with tf.variable_scope('merge') as scope: block = tf.concat([block[:, :, :, 0:127],tf.reshape(outputs,[-1,ori_shape[1],ori_shape[2],1])], 3) with tf.variable_scope('predict') as scope: # up = upsample2d(block, factor = 2, has_bias=True, trainable=True, name='1') # up = block up = conv2d_bn_relu(block, num_kernels=128, kernel_size=(3, 3), stride=[1, 1, 1, 1], padding='SAME', name='2') scores = conv2d(up, num_kernels=2 * num_bases, kernel_size=(1, 1), stride=[1, 1, 1, 1], padding='SAME',name='score') probs = tf.nn.softmax(tf.reshape(scores, [-1, 2]), name='prob') deltas = conv2d(up, num_kernels=4 * num_bases, kernel_size=(1, 1), stride=[1, 1, 1, 1], padding='SAME',name='delta') #<todo> flip to train and test mode nms (e.g. different nms_pre_topn values): use tf.cond with tf.variable_scope('NMS') as scope: #non-max img_scale = 1 rois, roi_scores = tf_rpn_nms( probs, deltas, anchors, inds_inside, stride, img_width, img_height, img_scale, nms_thresh=0.7, min_size=stride, nms_pre_topn=500, nms_post_topn=100, name ='nms') #<todo> feature = upsample2d(block, factor = 4, ...) feature = block print ('top: scale=%f, stride=%d'%(1./stride, stride)) return feature, scores, probs, deltas, rois, roi_scores, stride, top_states