def create_model(self, config): sparse_feature_number = config.get( "hyper_parameters.sparse_feature_number") sparse_feature_dim = config.get("hyper_parameters.sparse_feature_dim") fc_sizes = config.get("hyper_parameters.fc_sizes") rank_model = net.DNNLayer(sparse_feature_number, sparse_feature_dim, fc_sizes) return rank_model
def create_model(self, config): sparse_feature_number = config.get( "hyper_parameters.sparse_feature_number") sparse_feature_dim = config.get("hyper_parameters.sparse_feature_dim") fc_sizes = config.get("hyper_parameters.fc_sizes") sparse_fea_num = config.get('hyper_parameters.sparse_fea_num') dense_feature_dim = config.get('hyper_parameters.dense_input_dim') sparse_input_slot = config.get('hyper_parameters.sparse_inputs_slots') dnn_model = net.DNNLayer(sparse_feature_number, sparse_feature_dim, dense_feature_dim, sparse_input_slot - 1, fc_sizes) return dnn_model