def main(): torch.manual_seed(args.seed) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt')) print("==========\nArgs:{}\n==========".format(args)) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU (GPU is highly recommended)") print('Initializing image data manager') dm = DataManager(args, use_gpu) trainloader, testloader = dm.return_dataloaders() model = Model(scale_cls=args.scale_cls, num_classes=args.num_classes) # load the model checkpoint = torch.load(args.resume) model.load_state_dict(checkpoint['state_dict']) print("Loaded checkpoint from '{}'".format(args.resume)) if use_gpu: model = model.cuda() test(model, testloader, use_gpu)
num_workers=1, shuffle=True, pin_memory=True) device = torch.device('cuda:0') model = Model() model = model.to(device) imsize = 256, 256 print(f"TestSize = {len(test)}") for epoch in range(122): # TEST if epoch % 10 == 0 and epoch > 1: print(f"------ EPOCH {epoch} ------") model.load_state_dict( torch.load(models_path / f"model{epoch}.pth", map_location=device)) model.eval() test_losses_AEE = [] test_losses_percent_AEE = [] with torch.no_grad(): for i_batch, sample_batched in tqdm(enumerate(test_loader)): event_images, gt_flow = sample_batched event_mask = torch.sum(event_images[:, :2, ...], dim=1) event_images = event_images.to(device) flow = model.forward(event_images) flow = flow.cpu()
from PIL import Image from torchvision import transforms from torch.nn import functional as F import numpy as np import cv2 import torch from net import Model model = Model(scale_cls=7, num_classes=8) resume = '/home/lemon/few-shot/fewshot-CAN/ChengR/CAN_ResNet_5_5/temp_Gobal4/model_best.pth.tar' checkpoint = torch.load(resume) model.load_state_dict(checkpoint['state_dict']) # final_convname = 'clasifier' features_blobs = [] def hook_feature(module, input, output): features_blobs.append(output.data.cpu().numpy()) # model._modules.get(final_convname).register_forward_hook(hook_feature) # print(model.state_dict()) # get the softmax weight params = list(model.parameters()) weight_softmax = np.squeeze(params[-2].data.numpy()) def returnCAM(feature_conv, weight_softmax, class_idx):
outputfile = open( '/home/xulzee/Documents/IQA/output/TID2013/vr_jpeg_result.txt', 'a+') outputfile.write( ('{} {:.7f} {:.7f}'.format(i, output_txt[0], label_txt[0])) + '\r\n') outputfile.close() use_gpu = torch.cuda.is_available() model = Model() print('Model structure:', model) if use_gpu: model = model.cuda() model_weights_file = '/home/xulzee/Documents/IQA/output/TID2013/79-0.0015128param.pth' model.load_state_dict(torch.load(model_weights_file)) print('load weights from', model_weights_file) test_dataset = MyDataset( data_file='/home/xulzee/Documents/IQA/vr_jpeg.h5') # test datasets test_dataloader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False, num_workers=0) if __name__ == '__main__': test()