zh_hidden = 1800 zh_dims = 712 input_dropout_p = 0.5 dropout_p = 0.5 enc_layers = 2 dec_layers = 2 en_max_len = 50 zh_max_len = 60 beam_size = 5 net = Seq2Seq(en_dims=en_dims, zh_dims=zh_dims, input_dropout_p=input_dropout_p, dropout_p=dropout_p, en_hidden=en_hidden, zh_hidden=zh_hidden, enc_layers=enc_layers, dec_layers=dec_layers, beam_size=beam_size, en_max_len=en_max_len, zh_max_len=zh_max_len) pre_trained = torch.load( '/data/xuwenshen/ai_challenge/code/fix_lens/models/' + args.model_path) net.load_state_dict(pre_trained) print(net) net.eval() test(test_loader=test_loader, transform=transform, net=net,
zh_voc_path = '/data/xuwenshen/ai_challenge/data/train/train/zh_voc.json' transform = Transform(en_voc_path=en_voc_path, zh_voc_path=zh_voc_path) en_dims = 800 en_voc = 50004 zh_dims = 800 zh_voc = 4004 en_hidden = 800 zh_hidden = 1000 atten_vec_size = 1200 net = Seq2Seq(en_dims=en_dims, en_voc=en_voc, zh_dims=zh_dims, zh_voc=zh_voc, dropout=1, en_hidden=en_hidden, zh_hidden=zh_hidden, atten_vec_size=atten_vec_size, entext_len=60) pre_trained = torch.load( '/data/xuwenshen/ai_challenge/code/bengio/models/ssprob-0.666313-loss-5.194733-score-0.339406-steps-41200-model.pkl' ) net.load_state_dict(pre_trained) print(net) test(test_loader=test_loader, transform=transform, net=net, batch_size=batch_size)
en_dims = 712 en_voc = 50004 zh_dims = 712 zh_voc = 4004 dropout = 0.5 en_hidden = 800 zh_hidden = 712 channels = 128 kernel_size = 3 net = Seq2Seq(en_dims=en_dims, en_voc=en_voc, zh_dims=zh_dims, zh_voc=zh_voc, dropout=dropout, en_hidden=en_hidden, zh_hidden=zh_hidden, channels=channels, kernel_size=kernel_size, entext_len=60) #pre_trained = torch.load('./models/ssprob-1.000000-loss-6.934007-steps-134044 model.pkl') #net.load_state_dict(pre_trained) print(net) epoch = 10000 lr = 0.001 hyperparameters = { 'learning rate': lr, 'batch size': batch_size,
en_dims = 256 zh_dims = 256 dropout = 0.5 en_hidden = 256 zh_hidden = 400 atten_vec_size = 712 channels = 1024 kernel_size = 1 net = Seq2Seq(en_dims=en_dims, zh_dims=zh_dims, dropout=dropout, en_hidden=en_hidden, zh_hidden=zh_hidden, atten_vec_size=atten_vec_size, channels=channels, kernel_size=kernel_size, entext_len=60) pre_trained = torch.load('./models/ssprob-0.777249-loss-5.034320-score-0.366200-steps-100400-model.pkl') net.load_state_dict(pre_trained) print (net) epoch = 10000 lr = 0.001 hyperparameters = { 'learning rate': lr, 'batch size': batch_size,