示例#1
0
    def _plot_intro(self):
        data_list = []
        nof_states = 0
        for elem in self.data:
            if "precision" in elem and elem["ctx"][0] == "Colt-intro":
                data_list.append(elem["precision"])
            elif "finished" in elem and elem["ctx"][0] == "Colt-intro":
                nof_states = elem["finished"]["num_explored"]
        df_ours = pd.DataFrame(data_list, columns=["precision"])

        link_failure_prob = 0.001
        list_imprecision = np.logspace(-5, 0, num=100)
        list_num_links = [191]

        data_bf = []
        data_hoeffding = []
        hoeffding_confidence = 0.95
        for imprecision in list_imprecision:
            samples_hoeffding = hoeffding_samples_for_target_precision(
                1 - imprecision, hoeffding_confidence)
            data_hoeffding.append([imprecision, samples_hoeffding])

            for num_links in list_num_links:
                states_brute_force = bf_states_for_target_precision(
                    1 - imprecision, num_links, link_failure_prob)
                data_bf.append([imprecision, num_links, states_brute_force])
        df_bf = pd.DataFrame(data_bf,
                             columns=["imprecision", "num_links", "states"])
        df_hoeffding = pd.DataFrame(data_hoeffding,
                                    columns=["imprecision", "samples"])

        sph.new_figure(13, 7)
        plt.axhline(y=1E-4,
                    linewidth=1,
                    label="four 9s guarantee",
                    linestyle="dotted",
                    color="#A0A0A0")

        plt.plot("samples",
                 "imprecision",
                 data=df_hoeffding,
                 label="random sampling",
                 linestyle="dashed")
        for num_links in list_num_links:
            plt.plot("states",
                     "imprecision",
                     data=df_bf[df_bf.num_links == num_links],
                     label="partial exploration".format(num_links),
                     linestyle="dotted")

        plt.plot(range(0, nof_states),
                 "precision",
                 data=df_ours,
                 label="\\textbf{this work}")
        plt.xlabel("\# states")
        plt.ylabel("imprecision")
        plt.xlim([1, 1E11])
        plt.loglog()
        plt.legend()
        sph.savefig(os.path.join(self.output_dir, "plot_intro.pdf"))
示例#2
0
    def _plot_5(self):
        data_list = []
        for elem in self.data:
            if "fraction_hot" in elem and elem["ctx"][0].endswith("-default"):
                data_list.append(elem["fraction_hot"])

        sph.new_figure(5.5, 5)
        sph.cdf.create(data_list, '-r')
        plt.xlabel("fraction of hot edges")
        sph.savefig(os.path.join(self.output_dir, "plot_5.pdf"))
示例#3
0
    def _plot_2(self):
        data_list = []
        for elem in self.data:
            if "time-explore" in elem and elem["ctx"][0].startswith(
                    "Uninett2010-br"):
                res = re.match(r'^Uninett2010-br([0-9]*)', elem["ctx"][0])
                data_list.append((int(res.group(1)), elem["ctx"][1],
                                  elem["time-explore"] / 60.0))
        df = pd.DataFrame(data_list, columns=["brs", "rep", "time_min"])

        fig, ax = sph.new_figure(10, 6)
        df.boxplot(column="time_min",
                   by="brs",
                   ax=ax,
                   grid=False,
                   flierprops=self.flierprops)
        ax.grid(b=True, which='major', axis='y', color='w')
        ax.set_axisbelow(True)
        plt.xlabel("number of border routers")
        plt.ylabel("time [min]")
        plt.title("")
        fig.suptitle("")
        sph.savefig(os.path.join(self.output_dir, "plot_2a.pdf"))

        data_list = []
        for elem in self.data:
            if "time-explore" in elem and elem["ctx"][0].startswith(
                    "Uninett2010-rr"):
                res = re.match(r'^Uninett2010-rr([0-9]*)', elem["ctx"][0])
                n_rrs = int(res.group(1))
                if n_rrs == 0:
                    n_rrs = "0"
                data_list.append(
                    (n_rrs, elem["ctx"][1], elem["time-explore"] / 60.0))
        df = pd.DataFrame(data_list, columns=["rrs", "rep", "time_min"])

        fig, ax = sph.new_figure(10, 6)
        df.boxplot(column="time_min",
                   by="rrs",
                   ax=ax,
                   grid=False,
                   flierprops=self.flierprops,
                   positions=[2, 3, 4, 5, 6, 1])
        ax.grid(b=True, which='major', axis='y', color='w')
        ax.set_axisbelow(True)
        plt.xlabel("number of route reflectors (0 = iBGP full mesh)")
        plt.ylabel("time [min]")
        plt.title("")
        fig.suptitle("")
        sph.savefig(os.path.join(self.output_dir, "plot_2b.pdf"))
示例#4
0
    def _plot_3(self):
        data_list = []
        for elem in self.data:
            if "time-explore" in elem and elem["ctx"][0].startswith(
                    "AS-3549-Xcongest"):
                res = re.match(r'^AS-3549-Xcongest-([0-9]*)', elem["ctx"][0])
                data_list.append((int(res.group(1)), elem["ctx"][1],
                                  elem["time-explore"] / 60.0))
        df = pd.DataFrame(data_list, columns=["flows", "rep", "time_min"])

        fig, ax = sph.new_figure(10, 6)
        df.boxplot(column="time_min",
                   by="flows",
                   ax=ax,
                   grid=False,
                   flierprops=self.flierprops)
        ax.grid(b=True, which='major', axis='y', color='w')
        ax.set_axisbelow(True)
        plt.xlabel("number of flows")
        plt.ylabel("time [min]")
        plt.ylim([0, 120])
        plt.title("")
        fig.suptitle("")

        plt.gcf().text(0.27, 0.93, "timeout (2 h):", fontsize=12)
        plt.gcf().text(0.54, 0.93, "1", fontsize=12)
        plt.gcf().text(0.74, 0.93, "2", fontsize=12)
        plt.gcf().text(0.84, 0.93, "3", fontsize=12)

        sph.savefig(os.path.join(self.output_dir, "plot_3.pdf"))
示例#5
0
    def _plot_1bc(self):
        data_list = []
        nof_states = {}
        for elem in self.data:
            if "precision" in elem and elem["ctx"][0] == "Colt-trace":
                data_list.append((elem["ctx"][1], elem["precision"]))
            elif "finished" in elem and elem["ctx"][0] == "Colt-trace":
                nof_states[elem["ctx"][1]] = elem["finished"]["num_explored"]
        df = pd.DataFrame(data_list, columns=["rep", "precision"])

        sph.new_figure(9, 6)
        self._multi_trace_plot(df, nof_states)
        sph.savefig(os.path.join(self.output_dir, "plot_1bi.pdf"))

        time_data_list = []
        for elem in self.data:
            if "time-explore" in elem and elem["ctx"][0] == "isp-trace":
                time_data_list.append(("ISP", elem["time-explore"]))

        if len(time_data_list) == 0:
            log.warning("skipping plot_1cii as ISP data is missing")
            return

        df = pd.DataFrame(time_data_list, columns=["net", "time"])

        max_y = 120
        log.info("Outliers:\n%s", str(df[df.time > max_y]))
        nof_greater_max_y = df[df.time > max_y].count()["net"]

        fig, ax = sph.new_figure(2, 6)
        df.boxplot(column="time",
                   by="net",
                   ax=ax,
                   grid=False,
                   flierprops=self.flierprops)
        ax.grid(b=True, which='major', axis='y', color='w')
        ax.set_axisbelow(True)
        plt.ylim([0, max_y])
        plt.xlabel("")
        plt.ylabel("time [s]")
        plt.title("")
        fig.suptitle("")
        plt.gcf().text(0.4,
                       0.93,
                       "+ {}".format(nof_greater_max_y),
                       fontsize=12)
        sph.savefig(os.path.join(self.output_dir, "plot_1cii.pdf"))
示例#6
0
    def _plot_1a(self):
        data_list = []
        prec_list = []
        is_timeout = set()
        max_time_explore = {}
        for elem in self.data:
            if "timeout_after_seconds" in elem and elem["ctx"][0].endswith(
                    "-default"):
                is_timeout.add((self._get_topo_name(elem), elem["ctx"][1]))
            elif "time-explore" in elem and elem["ctx"][0].endswith(
                    "-default"):
                nof_links = self.nof_links_for_topology[self._get_topo_name(
                    elem)]

                if self._get_topo_name(
                        elem) not in max_time_explore or max_time_explore[
                            self._get_topo_name(elem)] < elem["time-explore"]:
                    max_time_explore[self._get_topo_name(
                        elem)] = elem["time-explore"]

                if nof_links <= 75:
                    range = "50--75"
                elif nof_links <= 100:
                    range = "76--100"
                elif nof_links <= 200:
                    range = "101--200"
                else:
                    range = "$>$ 200"

                timeout = (self._get_topo_name(elem),
                           elem["ctx"][1]) in is_timeout

                data_list.append(
                    (elem["ctx"][0], nof_links, range, elem["ctx"][1],
                     elem["time-explore"], timeout))
            elif "finished" in elem and elem["ctx"][0].endswith("-default"):
                prec_list.append(
                    (elem["ctx"][0], elem["finished"]["precision"]))
        df = pd.DataFrame(data_list,
                          columns=[
                              "experiment", "links", "range", "rep", "time",
                              "is_timeout"
                          ])
        df_prec = pd.DataFrame(prec_list, columns=["experiment", "precision"])

        # count number of timeouts per topology
        df_to = df[["experiment", "is_timeout"]].groupby("experiment").sum()
        log.info("Number of timeouts:\n%s", str(df_to[df_to.is_timeout > 0]))

        # compute the worst-case imprecision
        log.info(
            "Worst imprecision:\n%s",
            str(df_prec[df_prec.precision > 1E-4].groupby("experiment").max()))

        sph.new_figure(11, 5.5)

        plt.axhline(60 * 60, c="gray", lw=1, label="1 h (timeout)")
        df_max = df[["experiment", "time",
                     "links"]].groupby("experiment").max()
        plt.plot("links",
                 "time",
                 "x",
                 data=df_max,
                 markersize=4,
                 mew=0.6,
                 label="maximum")
        df_med = df[["experiment", "time",
                     "links"]].groupby("experiment").median()
        plt.plot("links",
                 "time",
                 "+",
                 data=df_med,
                 markersize=4,
                 mew=0.6,
                 label="median")

        plt.xlabel("links")
        plt.ylabel("time [s]")
        plt.legend(handletextpad=0.3)
        plt.loglog()

        sph.savefig(os.path.join(self.output_dir, "plot_1a.pdf"))