def optimize_neurons(self): # Set up console output verbose_progress(True) gan_model = self.generator.model annotate_model_shapes(gan_model, gen=True) outdir = os.path.join( self.args.results, 'dissect', self.args.name_checkpoint + '_' + str(time.time())) os.makedirs(outdir, exist_ok=True) size = 1000 sample = z_sample_for_model(gan_model, size) train_sample = z_sample_for_model(gan_model, size, seed=2) dataset = TensorDataset(sample) train_dataset = TensorDataset(train_sample) self.cluster_segmenter = ClusterSegmenter(self.model, self.clusters, self.mean_clust, self.std_clust) segrunner = GeneratorSegRunner(self.cluster_segmenter) netname = outdir # Run dissect with torch.no_grad(): dissect( outdir, gan_model, dataset, train_dataset=train_dataset, segrunner=segrunner, examples_per_unit=20, netname=netname, quantile_threshold='iqr', meta=None, make_images=False, # True, make_labels=True, make_maxiou=False, make_covariance=False, make_report=True, make_row_images=True, make_single_images=True, batch_size=8, num_workers=8, rank_all_labels=True) sample_ablate = z_sample_for_model(gan_model, 16) dataset_ablate = TensorDataset(sample_ablate) data_loader = torch.utils.data.DataLoader(dataset_ablate, batch_size=8, shuffle=False, num_workers=8, pin_memory=True, sampler=None) with open(os.path.join(outdir, 'dissect.json')) as f: data = EasyDict(json.load(f)) dissect_layer = {lrec.layer: lrec for lrec in data.layers} self.layers_units = { 'layer2': [], 'layer3': [], 'layer4': [], 'layer5': [], 'layer6': [], } noise_units = np.array([35, 221, 496, 280]) for i in range(2, len(self.clusters) + 2): print('Cluster', i) rank_name = 'c_{0}-iou'.format(i) for l in range(len(self.layer_list_all)): ranking = next( r for r in dissect_layer[self.layer_list_all[l]].rankings if r.name == rank_name) unit_list = np.array(range(512)) unit_list[noise_units] = 0 ordering = np.argsort(ranking.score) units_list = unit_list[ordering] self.layers_units[self.layer_list_all[l]].append( units_list) # Mark the directory so that it's not done again. mark_job_done(outdir)
from torchvision import transforms from netdissect.nethook import InstrumentedModel from netdissect.autoeval import autoimport_eval from netdissect.modelconfig import annotate_model_shapes from netdissect.segviz import segment_visualization import PIL batch_size = 1 data = get_segments_dataset('dataset/Adissect_toy') #model = autoimport_eval("p2pgan.from_pth_file('models/pix2pix/p2p_churches.pth')") model = from_pth_file('models/pix2pix/p2p_churches.pth') segmenter = ( "netdissect.segmenter.UnifiedParsingSegmenter(segsizes=[256], segdiv='quad')" ) segrunner = GeneratorSegRunner(autoimport_eval(segmenter)) layer5 = ('model.model.1.model.3.model.3.model.3.model.1', 'layer5') layer9 = ( 'model.model.1.model.3.model.3.model.3.model.3.model.3.model.3.model.3', 'layer9') layer12 = ('model.model.1.model.3.model.3.model.3.model.5', 'layer12') model = InstrumentedModel(model) model.retain_layers([layer5, layer9, layer12]) annotate_model_shapes(model, gen=True, imgsize=None) segloader = torch.utils.data.DataLoader(data, batch_size=batch_size, pin_memory=True)
def main(): # Training settings def strpair(arg): p = tuple(arg.split(':')) if len(p) == 1: p = p + p return p def intpair(arg): p = arg.split(',') if len(p) == 1: p = p + p return tuple(int(v) for v in p) parser = argparse.ArgumentParser( description='Net dissect utility', prog='python -m netdissect', epilog=textwrap.dedent(help_epilog), formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('--model', type=str, default=None, help='constructor for the model to test') parser.add_argument('--pthfile', type=str, default=None, help='filename of .pth file for the model') parser.add_argument('--unstrict', action='store_true', default=False, help='ignore unexpected pth parameters') parser.add_argument('--submodule', type=str, default=None, help='submodule to load from pthfile') parser.add_argument('--outdir', type=str, default='dissect', help='directory for dissection output') parser.add_argument('--layers', type=strpair, nargs='+', help='space-separated list of layer names to dissect' + ', in the form layername[:reportedname]') parser.add_argument('--segments', type=str, default='dataset/broden', help='directory containing segmentation dataset') parser.add_argument('--segmenter', type=str, default=None, help='constructor for asegmenter class') parser.add_argument('--download', action='store_true', default=False, help='downloads Broden dataset if needed') parser.add_argument('--imagedir', type=str, default=None, help='directory containing image-only dataset') parser.add_argument('--imgsize', type=intpair, default=(227, 227), help='input image size to use') parser.add_argument('--netname', type=str, default=None, help='name for network in generated reports') parser.add_argument('--meta', type=str, nargs='+', help='json files of metadata to add to report') parser.add_argument('--merge', type=str, help='json file of unit data to merge in report') parser.add_argument('--examples', type=int, default=20, help='number of image examples per unit') parser.add_argument('--size', type=int, default=10000, help='dataset subset size to use') parser.add_argument('--batch_size', type=int, default=100, help='batch size for forward pass') parser.add_argument('--num_workers', type=int, default=24, help='number of DataLoader workers') parser.add_argument('--quantile_threshold', type=strfloat, default=None, choices=[FloatRange(0.0, 1.0), 'iqr'], help='quantile to use for masks') parser.add_argument('--no-labels', action='store_true', default=False, help='disables labeling of units') parser.add_argument('--maxiou', action='store_true', default=False, help='enables maxiou calculation') parser.add_argument('--covariance', action='store_true', default=False, help='enables covariance calculation') parser.add_argument('--rank_all_labels', action='store_true', default=False, help='include low-information labels in rankings') parser.add_argument('--no-images', action='store_true', default=False, help='disables generation of unit images') parser.add_argument('--no-report', action='store_true', default=False, help='disables generation report summary') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA usage') parser.add_argument('--gen', action='store_true', default=False, help='test a generator model (e.g., a GAN)') parser.add_argument('--gan', action='store_true', default=False, help='synonym for --gen') parser.add_argument('--perturbation', default=None, help='filename of perturbation attack to apply') parser.add_argument('--add_scale_offset', action='store_true', default=None, help='offsets masks according to stride and padding') parser.add_argument('--quiet', action='store_true', default=False, help='silences console output') if len(sys.argv) == 1: parser.print_usage(sys.stderr) sys.exit(1) args = parser.parse_args() args.images = not args.no_images args.report = not args.no_report args.labels = not args.no_labels if args.gan: args.gen = args.gan # Set up console output verbose_progress(not args.quiet) # Exit right away if job is already done or being done. if args.outdir is not None: exit_if_job_done(args.outdir) # Speed up pytorch torch.backends.cudnn.benchmark = True # Special case: download flag without model to test. if args.model is None and args.download: from netdissect.broden import ensure_broden_downloaded for resolution in [224, 227, 384]: ensure_broden_downloaded(args.segments, resolution, 1) from netdissect.segmenter import ensure_upp_segmenter_downloaded ensure_upp_segmenter_downloaded('dataset/segmodel') sys.exit(0) # Help if broden is not present if not args.gen and not args.imagedir and not os.path.isdir(args.segments): print_progress('Segmentation dataset not found at %s.' % args.segments) print_progress('Specify dataset directory using --segments [DIR]') print_progress('To download Broden, run: netdissect --download') sys.exit(1) # Default segmenter class if args.gen and args.segmenter is None: args.segmenter = ("netdissect.segmenter.UnifiedParsingSegmenter(" + "segsizes=[256], segdiv=None)") # Default threshold if args.quantile_threshold is None: if args.gen: args.quantile_threshold = 'iqr' else: args.quantile_threshold = 0.005 # Set up CUDA args.cuda = not args.no_cuda and torch.cuda.is_available() if args.cuda: torch.backends.cudnn.benchmark = True # Construct the network with specified layers instrumented if args.model is None: print_progress('No model specified') sys.exit(1) model = create_instrumented_model(args) # Update any metadata from files, if any meta = getattr(model, 'meta', {}) if args.meta: for mfilename in args.meta: with open(mfilename) as f: meta.update(json.load(f)) # Load any merge data from files mergedata = None if args.merge: with open(args.merge) as f: mergedata = json.load(f) # Set up the output directory, verify write access if args.outdir is None: args.outdir = os.path.join('dissect', type(model).__name__) exit_if_job_done(args.outdir) print_progress('Writing output into %s.' % args.outdir) os.makedirs(args.outdir, exist_ok=True) train_dataset = None if not args.gen: # Load dataset for classifier case. # Load perturbation perturbation = numpy.load( args.perturbation) if args.perturbation else None segrunner = None # Load broden dataset if args.imagedir is not None: dataset = try_to_load_images(args.imagedir, args.imgsize, perturbation, args.size) segrunner = ImageOnlySegRunner(dataset) else: dataset = try_to_load_broden(args.segments, args.imgsize, 1, perturbation, args.download, args.size) if dataset is None: dataset = try_to_load_multiseg(args.segments, args.imgsize, perturbation, args.size) if dataset is None: print_progress('No segmentation dataset found in %s', args.segments) print_progress('use --download to download Broden.') sys.exit(1) else: # For segmenter case the dataset is just a random z #dataset = z_dataset_for_model(model, args.size) #train_dataset = z_dataset_for_model(model, args.size, seed=2) dataset = datasets.ImageFolder('dataset/Adissect', transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize( (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])) train_dataset = dataset segrunner = GeneratorSegRunner(autoimport_eval(args.segmenter)) torch.no_grad() # Run dissect dissect(args.outdir, model, dataset, train_dataset=train_dataset, segrunner=segrunner, examples_per_unit=args.examples, netname=args.netname, quantile_threshold=args.quantile_threshold, meta=meta, merge=mergedata, make_images=args.images, make_labels=args.labels, make_maxiou=args.maxiou, make_covariance=args.covariance, make_report=args.report, make_row_images=args.images, make_single_images=True, rank_all_labels=args.rank_all_labels, batch_size=args.batch_size, num_workers=args.num_workers, settings=vars(args)) # Mark the directory so that it's not done again. mark_job_done(args.outdir)