示例#1
0
def lenet5(images, nclass):
    # conv 1
    net = layers.conv_2d_layer(images, [5, 5, images.get_shape()[3], 20], nonlinearity=None,
                               padding='SAME', name='conv_1', with_biases=False)
    biases = layers.variable_on_cpu('biases_1', net.get_shape()[3], tf.constant_initializer(0.0), dtype=tf.float32)
    net = tf.nn.bias_add(net, biases)
    net = tf.nn.relu(net)
    # max pool
    net = tf.nn.max_pool(net, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID')
    # conv 2
    net = layers.conv_2d_layer(net, [5, 5, net.get_shape()[3], 50], nonlinearity=None,
                               padding='SAME', name='conv_2', with_biases=False)
    biases = layers.variable_on_cpu('biases_2', net.get_shape()[3], tf.constant_initializer(0.0), dtype=tf.float32)
    net = tf.nn.bias_add(net, biases)
    net = tf.nn.relu(net)
    # max pool
    net = tf.nn.max_pool(net, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID')
    # reshape
    net = tf.reshape(net, [-1, (net.get_shape()[1]*net.get_shape()[2]*net.get_shape()[3]).value])
    # dense 1
    net = layers.dense_layer(net, net.get_shape()[1], 500,
                             nonlinearity=None, name='dense_1')
    net = tf.nn.relu(net)
    # dense 2
    net = layers.dense_layer(net, net.get_shape()[1], nclass,
                             nonlinearity=None, name='dense_2')
    return net
示例#2
0
def lenet5(images, nclass, wd, reuse):
    # conv 1
    net = layers.conv_2d_layer(images, [5, 5],
                               images.get_shape()[3].value,
                               20,
                               nonlinearity=tf.nn.relu,
                               wd=wd,
                               padding='SAME',
                               name='conv_1')
    # max pool
    net = tf.nn.max_pool(net,
                         ksize=[1, 2, 2, 1],
                         strides=[1, 2, 2, 1],
                         padding='VALID')
    # conv 2
    net = layers.conv_2d_layer(net, [5, 5],
                               net.get_shape()[3].value,
                               50,
                               nonlinearity=tf.nn.relu,
                               wd=wd,
                               padding='SAME',
                               name='conv_2')
    # max pool
    net = tf.nn.max_pool(net,
                         ksize=[1, 2, 2, 1],
                         strides=[1, 2, 2, 1],
                         padding='VALID')
    # reshape
    net = tf.reshape(net, [
        -1,
        (net.get_shape()[1] * net.get_shape()[2] * net.get_shape()[3]).value
    ])
    # dense 1
    net = tf.layers.dropout(net, 0.5, training=True)
    net = layers.dense_layer(net,
                             net.get_shape()[1].value,
                             500,
                             nonlinearity=tf.nn.relu,
                             wd=wd,
                             name='dense_1')
    net = tf.layers.dropout(net, 0.5, training=True)
    # dense 2
    net = layers.dense_layer(net,
                             net.get_shape()[1].value,
                             nclass,
                             nonlinearity=None,
                             wd=wd,
                             name='dense_2')
    return net
示例#3
0
def conv_bn_rectify(net, num_filters, wd, name, is_training, reuse):
    with tf.variable_scope(name):
        net = layers.conv_2d_layer(net, [3,3], net.get_shape()[3], num_filters, nonlinearity=None, wd=wd,
                                   padding='SAME', name='conv', with_biases=False)
        biases = layers._variable_on_cpu('biases', net.get_shape()[3], tf.constant_initializer(0.0), dtype=tf.float32)
        net = tf.nn.bias_add(net, biases)
        net = tf.contrib.layers.batch_norm(net, scope=tf.get_variable_scope(), decay=0.9, reuse=reuse, is_training=is_training)
        net = tf.nn.relu(net)
    return net
示例#4
0
def lenet5(images, nclass, wd, reuse):
    # conv 1
    net = layers.conv_2d_layer(images, [5,5], images.get_shape()[3].value, 20, nonlinearity=tf.nn.relu, wd=wd,
                               padding='SAME', name='conv_1')
    # max pool
    net = tf.nn.max_pool(net, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID')
    # conv 2
    net = layers.conv_2d_layer(net, [5,5], net.get_shape()[3].value, 50, nonlinearity=tf.nn.relu, wd=wd,
                               padding='SAME', name='conv_2')
    # max pool
    net = tf.nn.max_pool(net, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID')
    # reshape
    net = tf.reshape(net, [-1, (net.get_shape()[1]*net.get_shape()[2]*net.get_shape()[3]).value])
    # dense 1
    net = layers.dense_layer(net, net.get_shape()[1].value, 500, nonlinearity=tf.nn.relu, wd=wd, name='dense_1')
    # dense 2
    net = layers.dense_layer(net, net.get_shape()[1].value, nclass, nonlinearity=None, wd=wd, name='dense_2')
    return net
示例#5
0
def conv_bn_rectify(net, num_filters, name, is_training, reuse, kl_weight=1.0):
    with tf.variable_scope(name):
        net = layers.conv_2d_layer(net, [3,3, net.get_shape()[3], num_filters], nonlinearity=None,
                                   padding='SAME', name='conv', with_biases=False, reuse=reuse)
        net = layers.sbp_dropout(net, 3, is_training, 'sbp', reuse, kl_weight=kl_weight)
        biases = layers.variable_on_cpu('biases', net.get_shape()[3], tf.constant_initializer(0.0), dtype=tf.float32)
        net = tf.nn.bias_add(net, biases)
        net = tf.contrib.layers.batch_norm(net, scope=tf.get_variable_scope(), reuse=reuse, is_training=False,
                                           center=True, scale=True)
        net = tf.nn.relu(net)
    return net