def SSD300(input_shape, num_classes=21): # 300,300,3 input_tensor = Input(shape=input_shape) img_size = (input_shape[1], input_shape[0]) # SSD architecture,net net = VGG16(input_tensor) #-----------------------Six feature layers Processing---------------------------# # Process conv4_3 (38,38,512) net['conv4_3_norm'] = Normalize(20, name='conv4_3_norm')(net['conv4_3']) num_priors = 4 # Process the Prediction of bounding box # num_priors means how many priors in cell of this feature layer ,4 is x,y,h,w, positio of bounding box. net['conv4_3_norm_mbox_loc'] = Conv2D(num_priors * 4, kernel_size=(3,3), padding='same', name='conv4_3_norm_mbox_loc')(net['conv4_3_norm']) net['conv4_3_norm_mbox_loc_flat'] = Flatten(name='conv4_3_norm_mbox_loc_flat')(net['conv4_3_norm_mbox_loc']) # num_priors means how many priors in cell of this feature layer,num_classes means object classs net['conv4_3_norm_mbox_conf'] = Conv2D(num_priors * num_classes, kernel_size=(3,3), padding='same',name='conv4_3_norm_mbox_conf')(net['conv4_3_norm']) net['conv4_3_norm_mbox_conf_flat'] = Flatten(name='conv4_3_norm_mbox_conf_flat')(net['conv4_3_norm_mbox_conf']) priorbox = PriorBox(img_size, 30.0,max_size = 60.0, aspect_ratios=[2], variances=[0.1, 0.1, 0.2, 0.2], name='conv4_3_norm_mbox_priorbox') net['conv4_3_norm_mbox_priorbox'] = priorbox(net['conv4_3_norm']) # Process fc7 num_priors = 6 # Process the Prediction of bounding box # num_priors means how many priors in cell of this feature layer ,4 is x,y,h,w, positio of bounding box. net['fc7_mbox_loc'] = Conv2D(num_priors * 4, kernel_size=(3,3),padding='same',name='fc7_mbox_loc')(net['fc7']) net['fc7_mbox_loc_flat'] = Flatten(name='fc7_mbox_loc_flat')(net['fc7_mbox_loc']) # num_priors means how many priors in cell of this feature layer,num_classes means object classs net['fc7_mbox_conf'] = Conv2D(num_priors * num_classes, kernel_size=(3,3),padding='same',name='fc7_mbox_conf')(net['fc7']) net['fc7_mbox_conf_flat'] = Flatten(name='fc7_mbox_conf_flat')(net['fc7_mbox_conf']) priorbox = PriorBox(img_size, 60.0, max_size=111.0, aspect_ratios=[2, 3], variances=[0.1, 0.1, 0.2, 0.2], name='fc7_mbox_priorbox') net['fc7_mbox_priorbox'] = priorbox(net['fc7']) # Process conv6_2 num_priors = 6 # Process the Prediction of bounding box # num_priors means how many priors in cell of this feature layer ,4 is x,y,h,w, positio of bounding box. x = Conv2D(num_priors * 4, kernel_size=(3,3), padding='same',name='conv6_2_mbox_loc')(net['conv6_2']) net['conv6_2_mbox_loc'] = x net['conv6_2_mbox_loc_flat'] = Flatten(name='conv6_2_mbox_loc_flat')(net['conv6_2_mbox_loc']) # num_priors means how many priors in cell of this feature layer,num_classes means object classs x = Conv2D(num_priors * num_classes, kernel_size=(3,3), padding='same',name='conv6_2_mbox_conf')(net['conv6_2']) net['conv6_2_mbox_conf'] = x net['conv6_2_mbox_conf_flat'] = Flatten(name='conv6_2_mbox_conf_flat')(net['conv6_2_mbox_conf']) priorbox = PriorBox(img_size, 111.0, max_size=162.0, aspect_ratios=[2, 3], variances=[0.1, 0.1, 0.2, 0.2], name='conv6_2_mbox_priorbox') net['conv6_2_mbox_priorbox'] = priorbox(net['conv6_2']) # Process conv7_2 num_priors = 6 # Process the Prediction of bounding box # num_priors means how many priors in cell of this feature layer ,4 is x,y,h,w, positio of bounding box. x = Conv2D(num_priors * 4, kernel_size=(3,3), padding='same',name='conv7_2_mbox_loc')(net['conv7_2']) net['conv7_2_mbox_loc'] = x net['conv7_2_mbox_loc_flat'] = Flatten(name='conv7_2_mbox_loc_flat')(net['conv7_2_mbox_loc']) # num_priors means how many priors in cell of this feature layer,num_classes means object classs x = Conv2D(num_priors * num_classes, kernel_size=(3,3), padding='same',name='conv7_2_mbox_conf')(net['conv7_2']) net['conv7_2_mbox_conf'] = x net['conv7_2_mbox_conf_flat'] = Flatten(name='conv7_2_mbox_conf_flat')(net['conv7_2_mbox_conf']) priorbox = PriorBox(img_size, 162.0, max_size=213.0, aspect_ratios=[2, 3], variances=[0.1, 0.1, 0.2, 0.2], name='conv7_2_mbox_priorbox') net['conv7_2_mbox_priorbox'] = priorbox(net['conv7_2']) # Process conv8_2 num_priors = 4 # Process the Prediction of bounding box # num_priors means how many priors in cell of this feature layer ,4 is x,y,h,w, positio of bounding box. x = Conv2D(num_priors * 4, kernel_size=(3,3), padding='same',name='conv8_2_mbox_loc')(net['conv8_2']) net['conv8_2_mbox_loc'] = x net['conv8_2_mbox_loc_flat'] = Flatten(name='conv8_2_mbox_loc_flat')(net['conv8_2_mbox_loc']) # num_priors means how many priors in cell of this feature layer,num_classes means object classs x = Conv2D(num_priors * num_classes, kernel_size=(3,3), padding='same',name='conv8_2_mbox_conf')(net['conv8_2']) net['conv8_2_mbox_conf'] = x net['conv8_2_mbox_conf_flat'] = Flatten(name='conv8_2_mbox_conf_flat')(net['conv8_2_mbox_conf']) priorbox = PriorBox(img_size, 213.0, max_size=264.0, aspect_ratios=[2], variances=[0.1, 0.1, 0.2, 0.2], name='conv8_2_mbox_priorbox') net['conv8_2_mbox_priorbox'] = priorbox(net['conv8_2']) # Process conv9_2 num_priors = 4 # Process the Prediction of bounding box # num_priors means how many priors in cell of this feature layer ,4 is x,y,h,w, positio of bounding box. x = Conv2D(num_priors * 4, kernel_size=(3,3), padding='same',name='conv9_2_mbox_loc')(net['conv9_2']) net['conv9_2_mbox_loc'] = x net['conv9_2_mbox_loc_flat'] = Flatten(name='conv9_2_mbox_loc_flat')(net['conv9_2_mbox_loc']) # num_priors means how many priors in cell of this feature layer,num_classes means object classs x = Conv2D(num_priors * num_classes, kernel_size=(3,3), padding='same',name='conv9_2_mbox_conf')(net['conv9_2']) net['conv9_2_mbox_conf'] = x net['conv9_2_mbox_conf_flat'] = Flatten(name='conv9_2_mbox_conf_flat')(net['conv9_2_mbox_conf']) priorbox = PriorBox(img_size, 264.0, max_size=315.0, aspect_ratios=[2], variances=[0.1, 0.1, 0.2, 0.2], name='conv9_2_mbox_priorbox') net['conv9_2_mbox_priorbox'] = priorbox(net['conv9_2']) # concatenate location and conffident in all feature layers net['mbox_loc'] = concatenate([net['conv4_3_norm_mbox_loc_flat'], net['fc7_mbox_loc_flat'], net['conv6_2_mbox_loc_flat'], net['conv7_2_mbox_loc_flat'], net['conv8_2_mbox_loc_flat'], net['conv9_2_mbox_loc_flat']], axis=1, name='mbox_loc') net['mbox_conf'] = concatenate([net['conv4_3_norm_mbox_conf_flat'], net['fc7_mbox_conf_flat'], net['conv6_2_mbox_conf_flat'], net['conv7_2_mbox_conf_flat'], net['conv8_2_mbox_conf_flat'], net['conv9_2_mbox_conf_flat']], axis=1, name='mbox_conf') net['mbox_priorbox'] = concatenate([net['conv4_3_norm_mbox_priorbox'], net['fc7_mbox_priorbox'], net['conv6_2_mbox_priorbox'], net['conv7_2_mbox_priorbox'], net['conv8_2_mbox_priorbox'], net['conv9_2_mbox_priorbox']], axis=1, name='mbox_priorbox') if hasattr(net['mbox_loc'], '_keras_shape'): num_boxes = net['mbox_loc']._keras_shape[-1] // 4 elif hasattr(net['mbox_loc'], 'int_shape'): num_boxes = K.int_shape(net['mbox_loc'])[-1] // 4 # 8732,4 net['mbox_loc'] = Reshape((num_boxes, 4),name='mbox_loc_final')(net['mbox_loc']) # 8732,21 net['mbox_conf'] = Reshape((num_boxes, num_classes),name='mbox_conf_logits')(net['mbox_conf']) net['mbox_conf'] = Activation('softmax',name='mbox_conf_final')(net['mbox_conf']) net['predictions'] = concatenate([net['mbox_loc'], net['mbox_conf'], net['mbox_priorbox']], axis=2, name='predictions') print(net['predictions']) model = Model(net['input'], net['predictions']) return model
def SSD300(input_shape, num_classes=21): # 300,300,3 input_tensor = Input(shape=input_shape) img_size = (input_shape[1], input_shape[0]) # SSD结构,net字典 net = VGG16(input_tensor) # -----------------------将提取到的主干特征进行处理---------------------------# # 对conv4_3进行处理 38,38,512 net['conv4_3_norm'] = Normalize(20, name='conv4_3_norm')(net['conv4_3']) num_priors = 4 # 预测框的处理 # num_priors表示每个网格点先验框的数量,4是x,y,h,w的调整 net['conv4_3_norm_mbox_loc'] = Conv2D(num_priors * 4, kernel_size=(3, 3), padding='same', name='conv4_3_norm_mbox_loc')( net['conv4_3_norm']) net['conv4_3_norm_mbox_loc_flat'] = Flatten( name='conv4_3_norm_mbox_loc_flat')(net['conv4_3_norm_mbox_loc']) # num_priors表示每个网格点先验框的数量,num_classes是所分的类 net['conv4_3_norm_mbox_conf'] = Conv2D(num_priors * num_classes, kernel_size=(3, 3), padding='same', name='conv4_3_norm_mbox_conf')( net['conv4_3_norm']) net['conv4_3_norm_mbox_conf_flat'] = Flatten( name='conv4_3_norm_mbox_conf_flat')(net['conv4_3_norm_mbox_conf']) priorbox = PriorBox(img_size, 30.0, max_size=60.0, aspect_ratios=[2], variances=[0.1, 0.1, 0.2, 0.2], name='conv4_3_norm_mbox_priorbox') net['conv4_3_norm_mbox_priorbox'] = priorbox(net['conv4_3_norm']) # 对fc7层进行处理 num_priors = 6 # 预测框的处理 # num_priors表示每个网格点先验框的数量,4是x,y,h,w的调整 net['fc7_mbox_loc'] = Conv2D(num_priors * 4, kernel_size=(3, 3), padding='same', name='fc7_mbox_loc')(net['fc7']) net['fc7_mbox_loc_flat'] = Flatten(name='fc7_mbox_loc_flat')( net['fc7_mbox_loc']) # num_priors表示每个网格点先验框的数量,num_classes是所分的类 net['fc7_mbox_conf'] = Conv2D(num_priors * num_classes, kernel_size=(3, 3), padding='same', name='fc7_mbox_conf')(net['fc7']) net['fc7_mbox_conf_flat'] = Flatten(name='fc7_mbox_conf_flat')( net['fc7_mbox_conf']) priorbox = PriorBox(img_size, 60.0, max_size=111.0, aspect_ratios=[2, 3], variances=[0.1, 0.1, 0.2, 0.2], name='fc7_mbox_priorbox') net['fc7_mbox_priorbox'] = priorbox(net['fc7']) # 对conv6_2进行处理 num_priors = 6 # 预测框的处理 # num_priors表示每个网格点先验框的数量,4是x,y,h,w的调整 x = Conv2D(num_priors * 4, kernel_size=(3, 3), padding='same', name='conv6_2_mbox_loc')(net['conv6_2']) net['conv6_2_mbox_loc'] = x net['conv6_2_mbox_loc_flat'] = Flatten(name='conv6_2_mbox_loc_flat')( net['conv6_2_mbox_loc']) # num_priors表示每个网格点先验框的数量,num_classes是所分的类 x = Conv2D(num_priors * num_classes, kernel_size=(3, 3), padding='same', name='conv6_2_mbox_conf')(net['conv6_2']) net['conv6_2_mbox_conf'] = x net['conv6_2_mbox_conf_flat'] = Flatten(name='conv6_2_mbox_conf_flat')( net['conv6_2_mbox_conf']) priorbox = PriorBox(img_size, 111.0, max_size=162.0, aspect_ratios=[2, 3], variances=[0.1, 0.1, 0.2, 0.2], name='conv6_2_mbox_priorbox') net['conv6_2_mbox_priorbox'] = priorbox(net['conv6_2']) # 对conv7_2进行处理 num_priors = 6 # 预测框的处理 # num_priors表示每个网格点先验框的数量,4是x,y,h,w的调整 x = Conv2D(num_priors * 4, kernel_size=(3, 3), padding='same', name='conv7_2_mbox_loc')(net['conv7_2']) net['conv7_2_mbox_loc'] = x net['conv7_2_mbox_loc_flat'] = Flatten(name='conv7_2_mbox_loc_flat')( net['conv7_2_mbox_loc']) # num_priors表示每个网格点先验框的数量,num_classes是所分的类 x = Conv2D(num_priors * num_classes, kernel_size=(3, 3), padding='same', name='conv7_2_mbox_conf')(net['conv7_2']) net['conv7_2_mbox_conf'] = x net['conv7_2_mbox_conf_flat'] = Flatten(name='conv7_2_mbox_conf_flat')( net['conv7_2_mbox_conf']) priorbox = PriorBox(img_size, 162.0, max_size=213.0, aspect_ratios=[2, 3], variances=[0.1, 0.1, 0.2, 0.2], name='conv7_2_mbox_priorbox') net['conv7_2_mbox_priorbox'] = priorbox(net['conv7_2']) # 对conv8_2进行处理 num_priors = 4 # 预测框的处理 # num_priors表示每个网格点先验框的数量,4是x,y,h,w的调整 x = Conv2D(num_priors * 4, kernel_size=(3, 3), padding='same', name='conv8_2_mbox_loc')(net['conv8_2']) net['conv8_2_mbox_loc'] = x net['conv8_2_mbox_loc_flat'] = Flatten(name='conv8_2_mbox_loc_flat')( net['conv8_2_mbox_loc']) # num_priors表示每个网格点先验框的数量,num_classes是所分的类 x = Conv2D(num_priors * num_classes, kernel_size=(3, 3), padding='same', name='conv8_2_mbox_conf')(net['conv8_2']) net['conv8_2_mbox_conf'] = x net['conv8_2_mbox_conf_flat'] = Flatten(name='conv8_2_mbox_conf_flat')( net['conv8_2_mbox_conf']) priorbox = PriorBox(img_size, 213.0, max_size=264.0, aspect_ratios=[2], variances=[0.1, 0.1, 0.2, 0.2], name='conv8_2_mbox_priorbox') net['conv8_2_mbox_priorbox'] = priorbox(net['conv8_2']) # 对conv9_2进行处理 num_priors = 4 # 预测框的处理 # num_priors表示每个网格点先验框的数量,4是x,y,h,w的调整 x = Conv2D(num_priors * 4, kernel_size=(3, 3), padding='same', name='conv9_2_mbox_loc')(net['conv9_2']) net['conv9_2_mbox_loc'] = x net['conv9_2_mbox_loc_flat'] = Flatten(name='conv9_2_mbox_loc_flat')( net['conv9_2_mbox_loc']) # num_priors表示每个网格点先验框的数量,num_classes是所分的类 x = Conv2D(num_priors * num_classes, kernel_size=(3, 3), padding='same', name='conv9_2_mbox_conf')(net['conv9_2']) net['conv9_2_mbox_conf'] = x net['conv9_2_mbox_conf_flat'] = Flatten(name='conv9_2_mbox_conf_flat')( net['conv9_2_mbox_conf']) priorbox = PriorBox(img_size, 264.0, max_size=315.0, aspect_ratios=[2], variances=[0.1, 0.1, 0.2, 0.2], name='conv9_2_mbox_priorbox') net['conv9_2_mbox_priorbox'] = priorbox(net['conv9_2']) # 将所有结果进行堆叠 net['mbox_loc'] = concatenate([ net['conv4_3_norm_mbox_loc_flat'], net['fc7_mbox_loc_flat'], net['conv6_2_mbox_loc_flat'], net['conv7_2_mbox_loc_flat'], net['conv8_2_mbox_loc_flat'], net['conv9_2_mbox_loc_flat'] ], axis=1, name='mbox_loc') net['mbox_conf'] = concatenate([ net['conv4_3_norm_mbox_conf_flat'], net['fc7_mbox_conf_flat'], net['conv6_2_mbox_conf_flat'], net['conv7_2_mbox_conf_flat'], net['conv8_2_mbox_conf_flat'], net['conv9_2_mbox_conf_flat'] ], axis=1, name='mbox_conf') net['mbox_priorbox'] = concatenate([ net['conv4_3_norm_mbox_priorbox'], net['fc7_mbox_priorbox'], net['conv6_2_mbox_priorbox'], net['conv7_2_mbox_priorbox'], net['conv8_2_mbox_priorbox'], net['conv9_2_mbox_priorbox'] ], axis=1, name='mbox_priorbox') if hasattr(net['mbox_loc'], '_keras_shape'): num_boxes = net['mbox_loc']._keras_shape[-1] // 4 elif hasattr(net['mbox_loc'], 'int_shape'): num_boxes = K.int_shape(net['mbox_loc'])[-1] // 4 # 8732,4 net['mbox_loc'] = Reshape((num_boxes, 4), name='mbox_loc_final')(net['mbox_loc']) # 8732,21 net['mbox_conf'] = Reshape((num_boxes, num_classes), name='mbox_conf_logits')(net['mbox_conf']) net['mbox_conf'] = Activation('softmax', name='mbox_conf_final')(net['mbox_conf']) net['predictions'] = concatenate( [net['mbox_loc'], net['mbox_conf'], net['mbox_priorbox']], axis=2, name='predictions') print(net['predictions']) model = Model(net['input'], net['predictions']) return model
def SSD300(input_shape, num_classes=21, anchors_size=[30,60,111,162,213,264,315]): #---------------------------------# # 典型的输入大小为[300,300,3] #---------------------------------# input_tensor = Input(shape=input_shape) # net变量里面包含了整个SSD的结构,通过层名可以找到对应的特征层 net = VGG16(input_tensor) #-----------------------将提取到的主干特征进行处理---------------------------# # 对conv4_3的通道进行l2标准化处理 # 38,38,512 net['conv4_3_norm'] = Normalize(20, name='conv4_3_norm')(net['conv4_3']) num_priors = 4 # 预测框的处理 # num_priors表示每个网格点先验框的数量,4是x,y,h,w的调整 net['conv4_3_norm_mbox_loc'] = Conv2D(num_priors * 4, kernel_size=(3,3), padding='same', name='conv4_3_norm_mbox_loc')(net['conv4_3_norm']) net['conv4_3_norm_mbox_loc_flat'] = Flatten(name='conv4_3_norm_mbox_loc_flat')(net['conv4_3_norm_mbox_loc']) # num_priors表示每个网格点先验框的数量,num_classes是所分的类 net['conv4_3_norm_mbox_conf'] = Conv2D(num_priors * num_classes, kernel_size=(3,3), padding='same',name='conv4_3_norm_mbox_conf')(net['conv4_3_norm']) net['conv4_3_norm_mbox_conf_flat'] = Flatten(name='conv4_3_norm_mbox_conf_flat')(net['conv4_3_norm_mbox_conf']) priorbox = PriorBox(input_shape, anchors_size[0], max_size=anchors_size[1], aspect_ratios=[2], variances=[0.1, 0.1, 0.2, 0.2], name='conv4_3_norm_mbox_priorbox') net['conv4_3_norm_mbox_priorbox'] = priorbox(net['conv4_3_norm']) # 对fc7层进行处理 # 19,19,1024 num_priors = 6 # 预测框的处理 # num_priors表示每个网格点先验框的数量,4是x,y,h,w的调整 net['fc7_mbox_loc'] = Conv2D(num_priors * 4, kernel_size=(3,3),padding='same',name='fc7_mbox_loc')(net['fc7']) net['fc7_mbox_loc_flat'] = Flatten(name='fc7_mbox_loc_flat')(net['fc7_mbox_loc']) # num_priors表示每个网格点先验框的数量,num_classes是所分的类 net['fc7_mbox_conf'] = Conv2D(num_priors * num_classes, kernel_size=(3,3),padding='same',name='fc7_mbox_conf')(net['fc7']) net['fc7_mbox_conf_flat'] = Flatten(name='fc7_mbox_conf_flat')(net['fc7_mbox_conf']) priorbox = PriorBox(input_shape, anchors_size[1], max_size=anchors_size[2], aspect_ratios=[2, 3], variances=[0.1, 0.1, 0.2, 0.2], name='fc7_mbox_priorbox') net['fc7_mbox_priorbox'] = priorbox(net['fc7']) # 对conv6_2进行处理 # 10,10,512 num_priors = 6 # 预测框的处理 # num_priors表示每个网格点先验框的数量,4是x,y,h,w的调整 x = Conv2D(num_priors * 4, kernel_size=(3,3), padding='same',name='conv6_2_mbox_loc')(net['conv6_2']) net['conv6_2_mbox_loc'] = x net['conv6_2_mbox_loc_flat'] = Flatten(name='conv6_2_mbox_loc_flat')(net['conv6_2_mbox_loc']) # num_priors表示每个网格点先验框的数量,num_classes是所分的类 x = Conv2D(num_priors * num_classes, kernel_size=(3,3), padding='same',name='conv6_2_mbox_conf')(net['conv6_2']) net['conv6_2_mbox_conf'] = x net['conv6_2_mbox_conf_flat'] = Flatten(name='conv6_2_mbox_conf_flat')(net['conv6_2_mbox_conf']) priorbox = PriorBox(input_shape, anchors_size[2], max_size=anchors_size[3], aspect_ratios=[2, 3], variances=[0.1, 0.1, 0.2, 0.2], name='conv6_2_mbox_priorbox') net['conv6_2_mbox_priorbox'] = priorbox(net['conv6_2']) # 对conv7_2进行处理 # 5,5,256 num_priors = 6 # 预测框的处理 # num_priors表示每个网格点先验框的数量,4是x,y,h,w的调整 x = Conv2D(num_priors * 4, kernel_size=(3,3), padding='same',name='conv7_2_mbox_loc')(net['conv7_2']) net['conv7_2_mbox_loc'] = x net['conv7_2_mbox_loc_flat'] = Flatten(name='conv7_2_mbox_loc_flat')(net['conv7_2_mbox_loc']) # num_priors表示每个网格点先验框的数量,num_classes是所分的类 x = Conv2D(num_priors * num_classes, kernel_size=(3,3), padding='same',name='conv7_2_mbox_conf')(net['conv7_2']) net['conv7_2_mbox_conf'] = x net['conv7_2_mbox_conf_flat'] = Flatten(name='conv7_2_mbox_conf_flat')(net['conv7_2_mbox_conf']) priorbox = PriorBox(input_shape, anchors_size[3], max_size=anchors_size[4], aspect_ratios=[2, 3], variances=[0.1, 0.1, 0.2, 0.2], name='conv7_2_mbox_priorbox') net['conv7_2_mbox_priorbox'] = priorbox(net['conv7_2']) # 对conv8_2进行处理 # 3,3,256 num_priors = 4 # 预测框的处理 # num_priors表示每个网格点先验框的数量,4是x,y,h,w的调整 x = Conv2D(num_priors * 4, kernel_size=(3,3), padding='same',name='conv8_2_mbox_loc')(net['conv8_2']) net['conv8_2_mbox_loc'] = x net['conv8_2_mbox_loc_flat'] = Flatten(name='conv8_2_mbox_loc_flat')(net['conv8_2_mbox_loc']) # num_priors表示每个网格点先验框的数量,num_classes是所分的类 x = Conv2D(num_priors * num_classes, kernel_size=(3,3), padding='same',name='conv8_2_mbox_conf')(net['conv8_2']) net['conv8_2_mbox_conf'] = x net['conv8_2_mbox_conf_flat'] = Flatten(name='conv8_2_mbox_conf_flat')(net['conv8_2_mbox_conf']) priorbox = PriorBox(input_shape, anchors_size[4], max_size=anchors_size[5], aspect_ratios=[2], variances=[0.1, 0.1, 0.2, 0.2], name='conv8_2_mbox_priorbox') net['conv8_2_mbox_priorbox'] = priorbox(net['conv8_2']) # 对conv9_2进行处理 # 1,1,256 num_priors = 4 # 预测框的处理 # num_priors表示每个网格点先验框的数量,4是x,y,h,w的调整 x = Conv2D(num_priors * 4, kernel_size=(3,3), padding='same',name='conv9_2_mbox_loc')(net['conv9_2']) net['conv9_2_mbox_loc'] = x net['conv9_2_mbox_loc_flat'] = Flatten(name='conv9_2_mbox_loc_flat')(net['conv9_2_mbox_loc']) # num_priors表示每个网格点先验框的数量,num_classes是所分的类 x = Conv2D(num_priors * num_classes, kernel_size=(3,3), padding='same',name='conv9_2_mbox_conf')(net['conv9_2']) net['conv9_2_mbox_conf'] = x net['conv9_2_mbox_conf_flat'] = Flatten(name='conv9_2_mbox_conf_flat')(net['conv9_2_mbox_conf']) priorbox = PriorBox(input_shape, anchors_size[5], max_size=anchors_size[6], aspect_ratios=[2], variances=[0.1, 0.1, 0.2, 0.2], name='conv9_2_mbox_priorbox') net['conv9_2_mbox_priorbox'] = priorbox(net['conv9_2']) # 将所有结果进行堆叠 net['mbox_loc'] = concatenate([net['conv4_3_norm_mbox_loc_flat'], net['fc7_mbox_loc_flat'], net['conv6_2_mbox_loc_flat'], net['conv7_2_mbox_loc_flat'], net['conv8_2_mbox_loc_flat'], net['conv9_2_mbox_loc_flat']], axis=1, name='mbox_loc') net['mbox_conf'] = concatenate([net['conv4_3_norm_mbox_conf_flat'], net['fc7_mbox_conf_flat'], net['conv6_2_mbox_conf_flat'], net['conv7_2_mbox_conf_flat'], net['conv8_2_mbox_conf_flat'], net['conv9_2_mbox_conf_flat']], axis=1, name='mbox_conf') net['mbox_priorbox'] = concatenate([net['conv4_3_norm_mbox_priorbox'], net['fc7_mbox_priorbox'], net['conv6_2_mbox_priorbox'], net['conv7_2_mbox_priorbox'], net['conv8_2_mbox_priorbox'], net['conv9_2_mbox_priorbox']], axis=1, name='mbox_priorbox') # 8732,4 net['mbox_loc'] = Reshape((-1, 4),name='mbox_loc_final')(net['mbox_loc']) # 8732,21 net['mbox_conf'] = Reshape((-1, num_classes),name='mbox_conf_logits')(net['mbox_conf']) # 8732,8 net['mbox_conf'] = Activation('softmax',name='mbox_conf_final')(net['mbox_conf']) # 8732,33 net['predictions'] = concatenate([net['mbox_loc'], net['mbox_conf'], net['mbox_priorbox']], axis=2, name='predictions') model = Model(net['input'], net['predictions']) return model