示例#1
0
 def __init__(self, input_channel=1, output_features=22):
     super(FCN, self).__init__()
     self.feature = Unet(1, 3)
     self.layer1 = nn.Sequential(nn.Linear(256 * 256 * 3, 512),
                                 nn.ReLU(True))
     self.layer2 = nn.Sequential(nn.Linear(512, output_features),
                                 nn.ReLU(True))
示例#2
0
def main():
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('-w',
                        '--weight_path',
                        default='models/table-line-fine.h5')
    parser.add_argument('-o',
                        '--output_path',
                        default='models/table-line/100000')
    args = parser.parse_args()
    weight_path = args.weight_path
    output_path = args.output_path

    # # 加载网络模型
    model = Unet((1024, 1024, 3), 2)
    # 加载权重模型
    model.load_weights(weight_path)

    # model.summary()

    h5_to_pb(model, output_path)

    print('model saved')
示例#3
0
    #   种类少(几类)时,设置为True
    #   种类多(十几类)时,如果batch_size比较大(10以上),那么设置为True
    #   种类多(十几类)时,如果batch_size比较小(10以下),那么设置为False
    #---------------------------------------------------------------------#
    dice_loss = False
    #-------------------------------#
    #   主干网络预训练权重的使用
    #-------------------------------#
    pretrained = False
    #-------------------------------#
    #   Cuda的使用
    #-------------------------------#
    Cuda = True

    model = Unet(num_classes=NUM_CLASSES,
                 in_channels=inputs_size[-1],
                 pretrained=pretrained).train()

    #-------------------------------------------#
    #   权值文件的下载请看README
    #   权值和主干特征提取网络一定要对应
    #-------------------------------------------#
    model_path = r"model_data/unet_voc.pth"
    print('Loading weights into state dict...')
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model_dict = model.state_dict()
    pretrained_dict = torch.load(model_path, map_location=device)
    pretrained_dict = {
        k: v
        for k, v in pretrained_dict.items()
        if np.shape(model_dict[k]) == np.shape(v)
示例#4
0
from nets.unet import Unet

model = Unet([512,512,3],21)
model.summary()

for i,layer in enumerate(model.layers):
    print(i,layer.name)
示例#5
0
#--------------------------------------------#
#   该部分代码只用于看网络结构,并非测试代码
#--------------------------------------------#
from nets.unet import Unet

if __name__ == "__main__":
    model = Unet([512, 512, 3], 21, 'resnet50')
    model.summary()

    for i,layer in enumerate(model.layers):
        print(i,layer.name)
示例#6
0
    #------------------------------#
    inputs_size = [512, 512, 3]
    #--------------------------------------------------------------------#
    #   简单的医药分割只分背景和边缘
    #--------------------------------------------------------------------#
    num_classes = 2
    #--------------------------------------------------------------------#
    #   建议选项:
    #   种类少(几类)时,设置为True
    #   种类多(十几类)时,如果batch_size比较大(10以上),那么设置为True
    #   种类多(十几类)时,如果batch_size比较小(10以下),那么设置为False
    #---------------------------------------------------------------------#
    dice_loss = True

    # 获取model
    model = Unet(inputs_size, num_classes)

    #-------------------------------------------#
    #   权值文件的下载请看README
    #   权值和主干特征提取网络一定要对应
    #-------------------------------------------#
    model_path = "./model_data/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5"
    model.load_weights(model_path, by_name=True, skip_mismatch=True)

    # 打开数据集的txt
    with open(r"./Medical_Datasets/ImageSets/Segmentation/train.txt",
              "r") as f:
        train_lines = f.readlines()

    #-------------------------------------------------------------------------------#
    #   训练参数的设置
示例#7
0
def main(_):
    tf.logging.set_verbosity(tf.logging.INFO)

    # TensorFlow session: grow memory when needed. TF, DO NOT USE ALL MY GPU MEMORY!!!
    gpu_options = tf.GPUOptions(allow_growth=True)
    config = tf.ConfigProto(log_device_placement=False,
                            gpu_options=gpu_options)
    sess = tf.InteractiveSession(config=config)

    tf.reset_default_graph()
    X = tf.placeholder(tf.float32,
                       shape=[None, IMG_HEIGHT, IMG_WIDTH, 3],
                       name="X")
    mode = tf.placeholder(tf.bool, name="mode")  # training or not

    pred = Unet(X, mode, FLAGS)
    # evaluation = tf.argmax(logits, 1)

    sess.run(tf.global_variables_initializer())

    # Restore variables from training checkpoints.
    saver = tf.train.Saver()
    ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
        # Assuming model_checkpoint_path looks something like:
        #   /my-favorite-path/imagenet_train/model.ckpt-0,
        # extract global_step from it.
        global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
        print('Successfully loaded model from %s at step=%s.' %
              (ckpt.model_checkpoint_path, global_step))
    else:
        print('No checkpoint file found at %s' % FLAGS.checkpoint_dir)
        return

    ############################
    # Get data
    ############################
    raw = Data(FLAGS.data_dir)
    test_data = DataLoader(raw.data_dir, raw.get_data('prediction'),
                           FLAGS.batch_size)

    iterator = tf.data.Iterator.from_structure(test_data.dataset.output_types,
                                               test_data.dataset.output_shapes)
    next_batch = iterator.get_next()

    # Ops for initializing the two different iterators
    test_init_op = iterator.make_initializer(test_data.dataset)

    test_batches_per_epoch = int(test_data.data_size / FLAGS.batch_size)
    if test_data.data_size % FLAGS.batch_size > 0:
        test_batches_per_epoch += 1

    ##################################################
    # start test & make csv file.
    ##################################################
    start_time = datetime.datetime.now()
    print("Start test: {}".format(start_time))

    submission = dict()

    # Initialize iterator with the test dataset
    sess.run(test_init_op)
    for i in range(test_batches_per_epoch):
        batch_xs, fnames = sess.run(next_batch)
        pred = sess.run(pred, feed_dict={
            X: batch_xs,
            mode: False,
        })
        # TODO
        # size = len(fnames)
        # for n in xrange(0, size):
        #     submission[fnames[n].decode('UTF-8')] = id2name[pred[n]]
        #
        # count += size
        # print(count, ' completed')

    end_time = datetime.datetime.now()
    print('{} Data, End prediction: {}'.format(test_data.data_size, end_time))
    print('prediction waste time: {}'.format(end_time - start_time))
示例#8
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 9 23:11:51 2020
table line detect
@author: chineseocr
"""

from utils.config import tableModeLinePath
from utils.utils import letterbox_image,get_table_line,adjust_lines,line_to_line
import numpy as np
import cv2
from nets.unet import unet as Unet

model = Unet((None,None,3),2)
model.load_weights(tableModeLinePath)

def table_line(img,size=(512,512),hprob=0.5,vprob=0.5,row=50,col=10,alph=15):
    sizew,sizeh = size
    inputBlob,fx,fy = letterbox_image(img[...,::-1],(sizew,sizeh))
    pred = model.predict(np.array([np.array(inputBlob)/255.0]))
    pred = pred[0]
    vpred = pred[...,1]>vprob##竖线
    hpred = pred[...,0]>hprob##横线
    vpred = vpred.astype(int)
    hpred = hpred.astype(int)
    colboxes = get_table_line(vpred,axis=1,lineW=col)
    rowboxes = get_table_line(hpred,axis=0,lineW=row)
    # ccolbox = []
    # crowlbox= []
    if len(rowboxes)>0:
示例#9
0
    #---------------------------------------------------------------------#
    #   是否进行冻结训练,默认先冻结主干训练后解冻训练。
    #---------------------------------------------------------------------#
    Freeze_Train = True
    #---------------------------------------------------------------------#
    #   用于设置是否使用多线程读取数据,1代表关闭多线程
    #   开启后会加快数据读取速度,但是会占用更多内存
    #   keras里开启多线程有些时候速度反而慢了许多
    #   在IO为瓶颈的时候再开启多线程,即GPU运算速度远大于读取图片的速度。
    #---------------------------------------------------------------------#
    num_workers = 1

    #------------------------------------------------------#
    #   获取model
    #------------------------------------------------------#
    model = Unet([input_shape[0], input_shape[1], 3], num_classes, backbone)
    if model_path != '':
        #------------------------------------------------------#
        #   载入预训练权重
        #------------------------------------------------------#
        model.load_weights(model_path, by_name=True, skip_mismatch=True)

    #---------------------------#
    #   读取数据集对应的txt
    #---------------------------#
    with open(os.path.join(VOCdevkit_path, "ImageSets/Segmentation/train.txt"),
              "r") as f:
        train_lines = f.readlines()

    #-------------------------------------------------------------------------------#
    #   训练参数的设置
示例#10
0
def main(_):
    # We want to see all the logging messages for this tutorial.
    tf.logging.set_verbosity(tf.logging.INFO)

    tf.reset_default_graph()
    X = tf.placeholder(tf.float32, shape=[None, IMG_HEIGHT, IMG_WIDTH, 3], name="X")
    y = tf.placeholder(tf.float32, shape=[None, IMG_HEIGHT, IMG_WIDTH, 1], name="y")
    mode = tf.placeholder(tf.bool, name="mode") # training or not

    pred = Unet(X, mode, FLAGS)

    tf.add_to_collection("inputs", X)
    tf.add_to_collection("inputs", mode)
    tf.add_to_collection("outputs", pred)

    tf.summary.histogram("Predicted Mask", pred)
    tf.summary.image("Predicted Mask", pred)

    # Updates moving mean and moving variance for BatchNorm (train/inference)
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
        train_op = make_train_op(pred, y)

    IOU_op = _IOU(pred, y)
    # IOU_op = -_IOU(pred, y)
    tf.summary.scalar("IOU", IOU_op)

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    summary_op = tf.summary.merge_all()
    train_summary_writer = tf.summary.FileWriter(FLAGS.logdir + '/train', sess.graph)
    val_summary_writer = tf.summary.FileWriter(FLAGS.logdir + '/validation')

    saver = tf.train.Saver()

    start_epoch = 1
    epoch_from_ckpt = 0
    if FLAGS.ckpt_dir:
        saver.restore(sess, FLAGS.ckpt_dir)
        tmp = FLAGS.ckpt_dir
        tmp = tmp.split('-')
        tmp.reverse()
        epoch_from_ckpt = int(tmp[0])
        start_epoch = epoch_from_ckpt + 1

    if epoch_from_ckpt != FLAGS.epochs + 1:
        tf.logging.info('Training from epoch: %d ', start_epoch)

    # Saving as Protocol Buffer (pb)
    tf.train.write_graph(sess.graph_def,
                         FLAGS.train_dir,
                         'unet.pbtxt',
                         as_text=True)


    ############################
    # Get data
    ############################
    raw = Data(FLAGS.data_dir, FLAGS.validation_percentage)
    tr_data = DataLoader(raw.data_dir,
                         raw.get_data('training'),
                         FLAGS.batch_size)
    val_data = DataLoader(raw.data_dir,
                          raw.get_data('validation'),
                          FLAGS.batch_size)

    iterator = tf.data.Iterator.from_structure(tr_data.dataset.output_types,
                                               tr_data.dataset.output_shapes)
    next_batch = iterator.get_next()

    # Ops for initializing the two different iterators
    tr_init_op = iterator.make_initializer(tr_data.dataset)
    val_init_op = iterator.make_initializer(val_data.dataset)

    tr_batches_per_epoch = int(tr_data.data_size / FLAGS.batch_size)
    if tr_data.data_size % FLAGS.batch_size > 0:
        tr_batches_per_epoch += 1
    val_batches_per_epoch = int(val_data.data_size / FLAGS.batch_size)
    if val_data.data_size % FLAGS.batch_size > 0:
        val_batches_per_epoch += 1


    ############################
    # Training
    ############################
    print("{} Training start ++++++++ ".format(datetime.datetime.now()))
    for epoch in xrange(start_epoch, FLAGS.epochs + 1):
        tf.logging.info('epoch #%d start >>> ', epoch)

        sess.run(tr_init_op)
        for step in range(tr_batches_per_epoch):
            X_train, y_train = sess.run(next_batch)
            train_summary, accuracy, _ = \
                sess.run([summary_op, IOU_op, train_op],
                         feed_dict={X: X_train, y: y_train, mode: True})

            train_summary_writer.add_summary(train_summary, step)
            tf.logging.info('epoch #%d, step #%d/%d, accuracy(iou) %.5f%%' %
                            (epoch, step, tr_batches_per_epoch, accuracy))

        print("{} Validation start ++++++++ ".format(datetime.datetime.now()))
        total_val_accuracy = 0
        val_count = 0
        sess.run(val_init_op)
        for n in range(val_batches_per_epoch):
            X_val, y_val = sess.run(next_batch)
            val_summary, val_accuracy = \
                sess.run([summary_op, IOU_op],
                         feed_dict={X: X_val, y: y_val, mode: False})

            # total_val_accuracy += val_step_iou * X_val.shape[0]
            total_val_accuracy += val_accuracy
            val_count += 1

            val_summary_writer.add_summary(val_summary, epoch)
            tf.logging.info('step #%d/%d, accuracy(iou) %.5f%%' %
                            (n, val_batches_per_epoch, total_val_accuracy * 100))

        total_val_accuracy /= val_count
        tf.logging.info('step %d: Validation accuracy = %.1f%% (N=%d)' %
                        (epoch, total_val_accuracy * 100, raw.get_size('validation')))

        checkpoint_path = os.path.join(FLAGS.train_dir, 'unet.ckpt')
        tf.logging.info('Saving to "%s-%d"', checkpoint_path, epoch)
        saver.save(sess, checkpoint_path, global_step=epoch)
示例#11
0
#--------------------------------------------#
#   该部分代码只用于看网络结构,并非测试代码
#--------------------------------------------#
import torch
from torchsummary import summary

from nets.unet import Unet

if __name__ == "__main__":
    model = Unet(num_classes=2).train().cuda()

    summary(model, (3, 512, 512))
示例#12
0
            pr = self.net(images)[0]
            pr = F.softmax(pr.permute(1, 2, 0),
                           dim=-1).cpu().numpy().argmax(axis=-1)
            pr = pr[int((self.model_image_size[0] - nh) //
                        2):int((self.model_image_size[0] - nh) // 2 + nh),
                    int((self.model_image_size[1] - nw) //
                        2):int((self.model_image_size[1] - nw) // 2 + nw)]

        t1 = time.time()
        for _ in range(test_interval):
            with torch.no_grad():
                pr = self.net(images)[0]
                pr = F.softmax(pr.permute(1, 2, 0),
                               dim=-1).cpu().numpy().argmax(axis=-1)
                pr = pr[int((self.model_image_size[0] - nh) //
                            2):int((self.model_image_size[0] - nh) // 2 + nh),
                        int((self.model_image_size[1] - nw) //
                            2):int((self.model_image_size[1] - nw) // 2 + nw)]

        t2 = time.time()
        tact_time = (t2 - t1) / test_interval
        return tact_time


unet = FPS_Unet()
test_interval = 100
img = Image.open('img/street.jpg')
tact_time = unet.get_FPS(img, test_interval)
print(
    str(tact_time) + ' seconds, ' + str(1 / tact_time) + 'FPS, @batch_size 1')
示例#13
0
    #------------------------------#
    #   分类个数+1
    #   种类+背景
    #------------------------------#
    num_classes = 7
    #--------------------------------------------------------------------#
    #  dice loss
    #---------------------------------------------------------------------#
    dice_loss = True
    #------------------------------#
    #   数据集路径
    #------------------------------#
    dataset_path = "dataset_processing/classfication/"

    # 获取model
    model = Unet(inputs_size, num_classes)

    #-------------------------------------------#
    #   权值文件的下载请看README
    #   权值和主干特征提取网络一定要对应
    #-------------------------------------------#
    model_path = "model_data/unet_voc.h5"
    model.load_weights(model_path, by_name=True, skip_mismatch=True)

    # 打开数据集的txt
    with open(os.path.join(dataset_path, "ImageSets/Segmentation/train.txt"),
              "r") as f:
        train_lines = f.readlines()

    # 打开数据集的txt
    with open(os.path.join(dataset_path, "ImageSets/Segmentation/val.txt"),