def __init__(self, args): self.n_actions = args.n_actions self.n_agents = args.n_agents self.state_shape = args.state_shape self.obs_shape = args.obs_shape input_shape = self.obs_shape real_view_shape = args.real_view_shape input_shape_view = args.view_shape input_shape_feature = args.feature_shape # 根据参数决定RNN的输入维度 if args.last_action: input_shape += self.n_actions if args.reuse_network: input_shape += self.n_agents # 神经网络 # self.eval_rnn = RNN(input_shape, args) # 每个agent选动作的网络 # self.target_rnn = RNN(input_shape, args) # print(real_view_shape, input_shape_view, input_shape_feature) self.eval_rnn = ConvNet_MLP(real_view_shape, input_shape_view, input_shape_feature, args) # 每个agent选动作的网络 self.target_rnn = ConvNet_MLP(real_view_shape, input_shape_view, input_shape_feature, args) self.eval_qmix_net = QMixNet(args) # 把agentsQ值加起来的网络 self.target_qmix_net = QMixNet(args) self.args = args if self.args.cuda: self.eval_rnn.cuda() self.target_rnn.cuda() self.eval_qmix_net.cuda() self.target_qmix_net.cuda() self.model_dir = args.model_dir + '/' + args.alg + '/' + args.env_name + '/' + str(args.map_size) # print(self.model_dir) # 如果存在模型则加载模型 if self.args.load_model: if os.path.exists(self.model_dir + '/rnn_net_params.pkl'): path_rnn = self.model_dir + '/rnn_net_params.pkl' path_qmix = self.model_dir + '/qmix_net_params.pkl' map_location = 'cuda:0' if self.args.cuda else 'cpu' self.eval_rnn.load_state_dict(torch.load(path_rnn, map_location=map_location)) # self.eval_qmix_net.load_state_dict(torch.load(path_qmix, map_location=map_location)) print('Successfully load the model: {} and {}'.format(path_rnn, path_qmix)) else: raise Exception("No model!") # 让target_net和eval_net的网络参数相同 self.target_rnn.load_state_dict(self.eval_rnn.state_dict()) self.target_qmix_net.load_state_dict(self.eval_qmix_net.state_dict()) self.eval_parameters = list(self.eval_qmix_net.parameters()) + list(self.eval_rnn.parameters()) if args.optimizer == "RMS": self.optimizer = torch.optim.RMSprop(self.eval_parameters, lr=args.lr) # 执行过程中,要为每个agent都维护一个eval_hidden # 学习过程中,要为每个episode的每个agent都维护一个eval_hidden、target_hidden self.eval_hidden = None self.target_hidden = None print('Init alg QMIX')
def __init__(self, args): self.n_actions = args.n_actions self.n_agents = args.n_agents self.state_shape = args.state_shape self.obs_shape = args.obs_shape input_shape = self.obs_shape # 根据参数决定RNN的输入维度 if args.last_action: input_shape += self.n_actions if args.reuse_network: input_shape += self.n_agents # 神经网络 self.eval_rnn = RNN(input_shape, args) # 每个agent选动作的网络 self.target_rnn = RNN(input_shape, args) self.eval_qmix_net = QMixNet(args) # 把agentsQ值加起来的网络 self.target_qmix_net = QMixNet(args) self.args = args if self.args.cuda: self.eval_rnn.cuda() self.target_rnn.cuda() self.eval_qmix_net.cuda() self.target_qmix_net.cuda() self.model_dir = args.model_dir + '/' + args.alg + '/' + args.map # 如果存在模型则加载模型 if os.path.exists(self.model_dir + '/rnn_net_params.pkl'): path_rnn = self.model_dir + '/rnn_net_params.pkl' path_qmix = self.model_dir + '/qmix_net_params.pkl' self.eval_rnn.load_state_dict(torch.load(path_rnn)) self.eval_qmix_net.load_state_dict(torch.load(path_qmix)) print('Successfully load the model: {} and {}'.format( path_rnn, path_qmix)) # 让target_net和eval_net的网络参数相同 self.target_rnn.load_state_dict(self.eval_rnn.state_dict()) self.target_qmix_net.load_state_dict(self.eval_qmix_net.state_dict()) self.eval_parameters = list(self.eval_qmix_net.parameters()) + list( self.eval_rnn.parameters()) if args.optimizer == "RMS": self.optimizer = torch.optim.RMSprop(self.eval_parameters, lr=args.lr) # 执行过程中,要为每个agent都维护一个eval_hidden # 学习过程中,要为每个episode的每个agent都维护一个eval_hidden、target_hidden self.eval_hidden = None self.target_hidden = None
def __init__(self, args): self.n_actions = args.n_actions self.n_agents = args.n_agents self.state_shape = args.state_shape self.obs_shape = args.obs_shape # input shaoe of rnn input_shape = self.obs_shape if args.last_action: input_shape += self.n_actions if args.reuse_network: input_shape += self.n_agents # network self.z_policy = HierarchicalPolicy(args) # choose z self.eval_rnn = BootstrappedRNN(input_shape, args) # choose action for each agent self.target_rnn = BootstrappedRNN(input_shape, args) self.eval_qmix_net = QMixNet(args) # mix the q value self.target_qmix_net = QMixNet(args) self.mi_net = VarDistribution(args) # get q(z|sigma(tau)) self.args = args if self.args.cuda: self.z_policy.cuda() self.eval_rnn.cuda() self.target_rnn.cuda() self.eval_qmix_net.cuda() self.target_qmix_net.cuda() self.mi_net.cuda() self.model_dir = args.model_dir + '/' + args.alg + '/' + args.env_name + '/' + str( args.map_size) # 如果存在模型则加载模型 if self.args.load_model: if os.path.exists(self.model_dir + '/rnn_net_params.pkl'): path_z_policy = self.model_dir + '/z_policy_params.pkl' path_rnn = self.model_dir + '/rnn_net_params.pkl' path_qmix = self.model_dir + '/qmix_net_params.pkl' path_mi = self.model_dir + '/mi_net_params.pkl' map_location = 'cuda:0' if self.args.cuda else 'cpu' self.z_policy.load_state_dict( torch.load(path_z_policy, map_location=map_location)) self.eval_rnn.load_state_dict( torch.load(path_rnn, map_location=map_location)) # self.eval_qmix_net.load_state_dict(torch.load(path_qmix, map_location=map_location)) # self.mi_net.load_state_dict(torch.load(path_mi, map_location=map_location)) print('Successfully load the model: {}, {}, {} and {}'.format( path_z_policy, path_rnn, path_qmix, path_mi)) else: raise Exception("No model!") # 让target_net和eval_net的网络参数相同 self.target_rnn.load_state_dict(self.eval_rnn.state_dict()) self.target_qmix_net.load_state_dict(self.eval_qmix_net.state_dict()) self.eval_parameters = list(self.z_policy.parameters()) + list(self.eval_qmix_net.parameters()) + \ list(self.eval_rnn.parameters()) + list(self.mi_net.parameters()) if args.optimizer == "RMS": self.optimizer = torch.optim.RMSprop(self.eval_parameters, lr=args.lr) # 执行过程中,要为每个agent都维护一个eval_hidden # 学习过程中,要为每个episode的每个agent都维护一个eval_hidden、target_hidden self.eval_hidden = None self.target_hidden = None print('Init alg MAVEN')
class MAVEN: def __init__(self, args): self.n_actions = args.n_actions self.n_agents = args.n_agents self.state_shape = args.state_shape self.obs_shape = args.obs_shape # input shaoe of rnn input_shape = self.obs_shape if args.last_action: input_shape += self.n_actions if args.reuse_network: input_shape += self.n_agents # network self.z_policy = HierarchicalPolicy(args) # choose z self.eval_rnn = BootstrappedRNN(input_shape, args) # choose action for each agent self.target_rnn = BootstrappedRNN(input_shape, args) self.eval_qmix_net = QMixNet(args) # mix the q value self.target_qmix_net = QMixNet(args) self.mi_net = VarDistribution(args) # get q(z|sigma(tau)) self.args = args if self.args.cuda: self.z_policy.cuda() self.eval_rnn.cuda() self.target_rnn.cuda() self.eval_qmix_net.cuda() self.target_qmix_net.cuda() self.mi_net.cuda() self.model_dir = args.model_dir + '/' + args.alg + '/' + args.env_name + '/' + str( args.map_size) # 如果存在模型则加载模型 if self.args.load_model: if os.path.exists(self.model_dir + '/rnn_net_params.pkl'): path_z_policy = self.model_dir + '/z_policy_params.pkl' path_rnn = self.model_dir + '/rnn_net_params.pkl' path_qmix = self.model_dir + '/qmix_net_params.pkl' path_mi = self.model_dir + '/mi_net_params.pkl' map_location = 'cuda:0' if self.args.cuda else 'cpu' self.z_policy.load_state_dict( torch.load(path_z_policy, map_location=map_location)) self.eval_rnn.load_state_dict( torch.load(path_rnn, map_location=map_location)) # self.eval_qmix_net.load_state_dict(torch.load(path_qmix, map_location=map_location)) # self.mi_net.load_state_dict(torch.load(path_mi, map_location=map_location)) print('Successfully load the model: {}, {}, {} and {}'.format( path_z_policy, path_rnn, path_qmix, path_mi)) else: raise Exception("No model!") # 让target_net和eval_net的网络参数相同 self.target_rnn.load_state_dict(self.eval_rnn.state_dict()) self.target_qmix_net.load_state_dict(self.eval_qmix_net.state_dict()) self.eval_parameters = list(self.z_policy.parameters()) + list(self.eval_qmix_net.parameters()) + \ list(self.eval_rnn.parameters()) + list(self.mi_net.parameters()) if args.optimizer == "RMS": self.optimizer = torch.optim.RMSprop(self.eval_parameters, lr=args.lr) # 执行过程中,要为每个agent都维护一个eval_hidden # 学习过程中,要为每个episode的每个agent都维护一个eval_hidden、target_hidden self.eval_hidden = None self.target_hidden = None print('Init alg MAVEN') def learn(self, batch, max_episode_len, train_step, epsilon=None): # train_step表示是第几次学习,用来控制更新target_net网络的参数 ''' 在learn的时候,抽取到的数据是四维的,四个维度分别为 1——第几个episode 2——episode中第几个transition 3——第几个agent的数据 4——具体obs维度。因为在选动作时不仅需要输入当前的inputs,还要给神经网络输入hidden_state, hidden_state和之前的经验相关,因此就不能随机抽取经验进行学习。所以这里一次抽取多个episode,然后一次给神经网络 传入每个episode的同一个位置的transition ''' episode_num = batch['o'].shape[0] self.init_hidden(episode_num) for key in batch.keys(): # 把batch里的数据转化成tensor if key == 'u': batch[key] = torch.tensor(batch[key], dtype=torch.long) else: batch[key] = torch.tensor(batch[key], dtype=torch.float32) s, s_next, u, r, avail_u, avail_u_next, terminated, z = batch['s'], batch['s_next'], batch['u'], batch['r'], \ batch['avail_u'], batch['avail_u_next'], \ batch['terminated'], batch['z'] mask = 1 - batch["padded"].float() # 用来把那些填充的经验的TD-error置0,从而不让它们影响到学习 # 得到每个agent对应的Q值,维度为(episode个数, max_episode_len, n_agents, n_actions) q_evals, q_targets = self.get_q_values(batch, max_episode_len) if self.args.cuda: s = s.cuda() u = u.cuda() r = r.cuda() avail_u = avail_u.cuda() s_next = s_next.cuda() terminated = terminated.cuda() mask = mask.cuda() z = z.cuda() # -------------------------------------------------RL Loss------------------------------------------------------ z_prob = self.z_policy(s[:, 0, :]) log_z_prob = torch.log(z_prob) entropy = -(z_prob * log_z_prob).sum(dim=-1).detach() class_z = z.long().argmax( dim=-1, keepdim=True) # transform onehot vector to int z_prob_taken = torch.gather(z_prob, index=class_z, dim=-1).squeeze(-1) z_returns = r.sum(dim=1) rl_loss = -( z_prob_taken * (z_returns + self.args.entropy_coefficient * entropy)).mean() # -------------------------------------------------RL Loss------------------------------------------------------ # -------------------------------------------------MI Loss------------------------------------------------------ # get length for each episode episode_length = [] for episode_idx in range(episode_num): for transition_idx in range(self.args.episode_limit): if terminated[episode_idx, transition_idx, 0] == 1: episode_length.append(transition_idx + 1) break episode_len = torch.tensor(episode_length, dtype=torch.long) mi_prob = self.mi_net(q_evals.clone(), avail_u, s, episode_len) # (episode_num, args.noise_dim) class_z = class_z.squeeze(-1) mi_loss = f.cross_entropy(mi_prob, class_z) # -------------------------------------------------MI Loss------------------------------------------------------ # -------------------------------------------------QL Loss------------------------------------------------------ # 取每个agent动作对应的Q值,并且把最后不需要的一维去掉,因为最后一维只有一个值了 q_evals = torch.gather(q_evals, dim=3, index=u).squeeze(3) # 得到target_q q_targets[avail_u_next == 0.0] = -9999999 q_targets = q_targets.max(dim=3)[0] q_total_eval = self.eval_qmix_net(q_evals, s) q_total_target = self.target_qmix_net(q_targets, s_next) targets = r + self.args.gamma * q_total_target * (1 - terminated) td_error = (q_total_eval - targets.detach()) masked_td_error = mask * td_error # 抹掉填充的经验的td_error ql_loss = (masked_td_error**2).sum() / mask.sum() # -------------------------------------------------QL Loss------------------------------------------------------ loss = rl_loss + self.args.lambda_mi * mi_loss + self.args.lambda_ql * ql_loss self.optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(self.eval_parameters, self.args.grad_norm_clip) self.optimizer.step() # print('mi_loss is {}, ql_loss is {}'.format(mi_loss, ql_loss)) # print('Training params:') # for params in self.eval_rnn.named_parameters(): # print(params) if train_step > 0 and train_step % self.args.target_update_cycle == 0: self.target_rnn.load_state_dict(self.eval_rnn.state_dict()) self.target_qmix_net.load_state_dict( self.eval_qmix_net.state_dict()) def _get_inputs(self, batch, transition_idx): # 取出所有episode上该transition_idx的经验,u_onehot要取出所有,因为要用到上一条 obs, obs_next, u_onehot = batch['o'][:, transition_idx], \ batch['o_next'][:, transition_idx], batch['u_onehot'][:] episode_num = obs.shape[0] inputs, inputs_next = [], [] inputs.append(obs) inputs_next.append(obs_next) # 给obs添加上一个动作、agent编号 if self.args.last_action: if transition_idx == 0: # 如果是第一条经验,就让前一个动作为0向量 inputs.append(torch.zeros_like(u_onehot[:, transition_idx])) else: inputs.append(u_onehot[:, transition_idx - 1]) inputs_next.append(u_onehot[:, transition_idx]) if self.args.reuse_network: # 因为当前的obs三维的数据,每一维分别代表(episode编号,agent编号,obs维度),直接在dim_1上添加对应的向量 # 即可,比如给agent_0后面加(1, 0, 0, 0, 0),表示5个agent中的0号。而agent_0的数据正好在第0行,那么需要加的 # agent编号恰好就是一个单位矩阵,即对角线为1,其余为0 inputs.append( torch.eye(self.args.n_agents).unsqueeze(0).expand( episode_num, -1, -1)) inputs_next.append( torch.eye(self.args.n_agents).unsqueeze(0).expand( episode_num, -1, -1)) # 要把obs中的三个拼起来,并且要把episode_num个episode、self.args.n_agents个agent的数据拼成40条(40,96)的数据, # 因为这里所有agent共享一个神经网络,每条数据中带上了自己的编号,所以还是自己的数据 inputs = torch.cat( [x.reshape(episode_num * self.args.n_agents, -1) for x in inputs], dim=1) inputs_next = torch.cat([ x.reshape(episode_num * self.args.n_agents, -1) for x in inputs_next ], dim=1) return inputs, inputs_next def get_q_values(self, batch, max_episode_len): episode_num = batch['o'].shape[0] z = batch['z'].repeat(self.n_agents, 1) # each episode has one z q_evals, q_targets = [], [] for transition_idx in range(max_episode_len): inputs, inputs_next = self._get_inputs( batch, transition_idx) # add last_action、agent_id if self.args.cuda: z = z.cuda() inputs = inputs.cuda() inputs_next = inputs_next.cuda() self.eval_hidden = self.eval_hidden.cuda() self.target_hidden = self.target_hidden.cuda() q_eval, self.eval_hidden = self.eval_rnn(inputs, self.eval_hidden, z) q_target, self.target_hidden = self.target_rnn( inputs_next, self.target_hidden, z) # 把q_eval维度重新变回(8, 5,n_actions) q_eval = q_eval.view(episode_num, self.n_agents, -1) q_target = q_target.view(episode_num, self.n_agents, -1) q_evals.append(q_eval) q_targets.append(q_target) # 得的q_eval和q_target是一个列表,列表里装着max_episode_len个数组,数组的的维度是(episode个数, n_agents,n_actions) # 把该列表转化成(episode个数, max_episode_len, n_agents,n_actions)的数组 q_evals = torch.stack(q_evals, dim=1) q_targets = torch.stack(q_targets, dim=1) return q_evals, q_targets def init_hidden(self, episode_num): # 为每个episode中的每个agent都初始化一个eval_hidden、target_hidden if self.args.load_model: self.eval_hidden = torch.zeros( (episode_num, int(self.n_agents * self.args.est_mod_num), self.args.rnn_hidden_dim)) self.target_hidden = torch.zeros( (episode_num, int(self.n_agents * self.args.est_mod_num), self.args.rnn_hidden_dim)) else: self.eval_hidden = torch.zeros( (episode_num, self.n_agents, self.args.rnn_hidden_dim)) self.target_hidden = torch.zeros( (episode_num, self.n_agents, self.args.rnn_hidden_dim)) def save_model(self, train_step): num = str(train_step // self.args.save_cycle) if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) torch.save(self.z_policy.state_dict(), self.model_dir + '/' + num + '_z_policy_params.pkl') torch.save(self.mi_net.state_dict(), self.model_dir + '/' + num + '_mi_net_params.pkl') torch.save(self.eval_qmix_net.state_dict(), self.model_dir + '/' + num + '_qmix_net_params.pkl') torch.save(self.eval_rnn.state_dict(), self.model_dir + '/' + num + '_rnn_net_params.pkl')
class QMIX: def __init__(self, args): self.n_actions = args.n_actions self.n_agents = args.n_agents self.state_shape = args.state_shape self.obs_shape = args.obs_shape input_shape = self.obs_shape real_view_shape = args.real_view_shape input_shape_view = args.view_shape input_shape_feature = args.feature_shape # 根据参数决定RNN的输入维度 if args.last_action: input_shape += self.n_actions if args.reuse_network: input_shape += self.n_agents # 神经网络 # self.eval_rnn = RNN(input_shape, args) # 每个agent选动作的网络 # self.target_rnn = RNN(input_shape, args) # print(real_view_shape, input_shape_view, input_shape_feature) self.eval_rnn = ConvNet_MLP(real_view_shape, input_shape_view, input_shape_feature, args) # 每个agent选动作的网络 self.target_rnn = ConvNet_MLP(real_view_shape, input_shape_view, input_shape_feature, args) self.eval_qmix_net = QMixNet(args) # 把agentsQ值加起来的网络 self.target_qmix_net = QMixNet(args) self.args = args if self.args.cuda: self.eval_rnn.cuda() self.target_rnn.cuda() self.eval_qmix_net.cuda() self.target_qmix_net.cuda() self.model_dir = args.model_dir + '/' + args.alg + '/' + args.env_name + '/' + str(args.map_size) # print(self.model_dir) # 如果存在模型则加载模型 if self.args.load_model: if os.path.exists(self.model_dir + '/rnn_net_params.pkl'): path_rnn = self.model_dir + '/rnn_net_params.pkl' path_qmix = self.model_dir + '/qmix_net_params.pkl' map_location = 'cuda:0' if self.args.cuda else 'cpu' self.eval_rnn.load_state_dict(torch.load(path_rnn, map_location=map_location)) # self.eval_qmix_net.load_state_dict(torch.load(path_qmix, map_location=map_location)) print('Successfully load the model: {} and {}'.format(path_rnn, path_qmix)) else: raise Exception("No model!") # 让target_net和eval_net的网络参数相同 self.target_rnn.load_state_dict(self.eval_rnn.state_dict()) self.target_qmix_net.load_state_dict(self.eval_qmix_net.state_dict()) self.eval_parameters = list(self.eval_qmix_net.parameters()) + list(self.eval_rnn.parameters()) if args.optimizer == "RMS": self.optimizer = torch.optim.RMSprop(self.eval_parameters, lr=args.lr) # 执行过程中,要为每个agent都维护一个eval_hidden # 学习过程中,要为每个episode的每个agent都维护一个eval_hidden、target_hidden self.eval_hidden = None self.target_hidden = None print('Init alg QMIX') def learn(self, batch, max_episode_len, train_step, epsilon=None): # train_step表示是第几次学习,用来控制更新target_net网络的参数 ''' 在learn的时候,抽取到的数据是四维的,四个维度分别为 1——第几个episode 2——episode中第几个transition 3——第几个agent的数据 4——具体obs维度。因为在选动作时不仅需要输入当前的inputs,还要给神经网络输入hidden_state, hidden_state和之前的经验相关,因此就不能随机抽取经验进行学习。所以这里一次抽取多个episode,然后一次给神经网络 传入每个episode的同一个位置的transition ''' episode_num = batch['o'].shape[0] self.init_hidden(episode_num) for key in batch.keys(): # 把batch里的数据转化成tensor if key == 'u': batch[key] = torch.tensor(batch[key], dtype=torch.long) else: batch[key] = torch.tensor(batch[key], dtype=torch.float32) s, s_next, u, r, avail_u, avail_u_next, terminated = batch['s'], batch['s_next'], batch['u'], \ batch['r'], batch['avail_u'], batch['avail_u_next'], \ batch['terminated'] mask = 1 - batch["padded"].float() # 用来把那些填充的经验的TD-error置0,从而不让它们影响到学习 # 得到每个agent对应的Q值,维度为(episode个数, max_episode_len, n_agents, n_actions) q_evals, q_targets = self.get_q_values(batch, max_episode_len) if self.args.cuda: s = s.cuda() u = u.cuda() r = r.cuda() s_next = s_next.cuda() terminated = terminated.cuda() mask = mask.cuda() # 取每个agent动作对应的Q值,并且把最后不需要的一维去掉,因为最后一维只有一个值了 q_evals = torch.gather(q_evals, dim=3, index=u).squeeze(3) # 得到target_q q_targets[avail_u_next == 0.0] = - 9999999 q_targets = q_targets.max(dim=3)[0] q_total_eval = self.eval_qmix_net(q_evals, s) q_total_target = self.target_qmix_net(q_targets, s_next) targets = r + self.args.gamma * q_total_target * (1 - terminated) td_error = (q_total_eval - targets.detach()) masked_td_error = mask * td_error # 抹掉填充的经验的td_error # 不能直接用mean,因为还有许多经验是没用的,所以要求和再比真实的经验数,才是真正的均值 loss = (masked_td_error ** 2).sum() / mask.sum() self.optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(self.eval_parameters, self.args.grad_norm_clip) self.optimizer.step() if train_step > 0 and train_step % self.args.target_update_cycle == 0: self.target_rnn.load_state_dict(self.eval_rnn.state_dict()) self.target_qmix_net.load_state_dict(self.eval_qmix_net.state_dict()) def _get_inputs(self, batch, transition_idx): # 取出所有episode上该transition_idx的经验,u_onehot要取出所有,因为要用到上一条 obs, obs_next, u_onehot = batch['o'][:, transition_idx], \ batch['o_next'][:, transition_idx], batch['u_onehot'][:] episode_num = obs.shape[0] inputs, inputs_next = [], [] inputs.append(obs) inputs_next.append(obs_next) # 给obs添加上一个动作、agent编号 if self.args.last_action: if transition_idx == 0: # 如果是第一条经验,就让前一个动作为0向量 inputs.append(torch.zeros_like(u_onehot[:, transition_idx])) else: inputs.append(u_onehot[:, transition_idx - 1]) inputs_next.append(u_onehot[:, transition_idx]) if self.args.reuse_network: # 因为当前的obs三维的数据,每一维分别代表(episode编号,agent编号,obs维度),直接在dim_1上添加对应的向量 # 即可,比如给agent_0后面加(1, 0, 0, 0, 0),表示5个agent中的0号。而agent_0的数据正好在第0行,那么需要加的 # agent编号恰好就是一个单位矩阵,即对角线为1,其余为0 inputs.append(torch.eye(self.args.n_agents).unsqueeze(0).expand(episode_num, -1, -1)) inputs_next.append(torch.eye(self.args.n_agents).unsqueeze(0).expand(episode_num, -1, -1)) # 要把obs中的三个拼起来,并且要把episode_num个episode、self.args.n_agents个agent的数据拼成40条(40,96)的数据, # 因为这里所有agent共享一个神经网络,每条数据中带上了自己的编号,所以还是自己的数据 inputs = torch.cat([x.reshape(episode_num * self.args.n_agents, -1) for x in inputs], dim=1) inputs_next = torch.cat([x.reshape(episode_num * self.args.n_agents, -1) for x in inputs_next], dim=1) return inputs, inputs_next def get_q_values(self, batch, max_episode_len): episode_num = batch['o'].shape[0] q_evals, q_targets = [], [] for transition_idx in range(max_episode_len): inputs, inputs_next = self._get_inputs(batch, transition_idx) # 给obs加last_action、agent_id if self.args.cuda: inputs = inputs.cuda() inputs_next = inputs_next.cuda() self.eval_hidden = self.eval_hidden.cuda() self.target_hidden = self.target_hidden.cuda() # q_eval, self.eval_hidden = self.eval_rnn(inputs, self.eval_hidden) # q_target, self.target_hidden = self.target_rnn(inputs_next, self.target_hidden) q_eval = self.eval_rnn(inputs) q_target = self.target_rnn(inputs_next) # 把q_eval维度重新变回(8, 5,n_actions) q_eval = q_eval.view(episode_num, self.n_agents, -1) q_target = q_target.view(episode_num, self.n_agents, -1) q_evals.append(q_eval) q_targets.append(q_target) # 得的q_eval和q_target是一个列表,列表里装着max_episode_len个数组,数组的的维度是(episode个数, n_agents,n_actions) # 把该列表转化成(episode个数, max_episode_len, n_agents,n_actions)的数组 q_evals = torch.stack(q_evals, dim=1) q_targets = torch.stack(q_targets, dim=1) return q_evals, q_targets def init_hidden(self, episode_num): # 为每个episode中的每个agent都初始化一个eval_hidden、target_hidden self.eval_hidden = torch.zeros((episode_num, self.n_agents, self.args.rnn_hidden_dim)) self.target_hidden = torch.zeros((episode_num, self.n_agents, self.args.rnn_hidden_dim)) def save_model(self, train_step): num = str(train_step // self.args.save_cycle) if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) torch.save(self.eval_qmix_net.state_dict(), self.model_dir + '/' + num + '_qmix_net_params.pkl') torch.save(self.eval_rnn.state_dict(), self.model_dir + '/' + num + '_rnn_net_params.pkl')
def __init__(self, args): self.n_actions = args.n_actions self.n_agents = args.n_agents self.state_shape = args.state_shape self.obs_shape = args.obs_shape self.rnn_hidden_dim = args.rnn_hidden_dim input_shape = self.obs_shape # 根据参数决定RNN的输入维度 if args.last_action: input_shape += self.n_actions self.last_action = True else: self.last_action = False if args.reuse_network: input_shape += self.n_agents self.reuse_network = True else: self.reuse_network = False # 神经网络 self.eval_rnn = RNN(input_shape, args) # 每个agent选动作的网络 self.target_rnn = RNN(input_shape, args) self.eval_qmix_net = QMixNet(args) # 把agentsQ值加起来的网络 self.target_qmix_net = QMixNet(args) self.gamma = args.gamma self.last_action = args.last_action self.reuse_network = args.reuse_network self.args = args self.grad_norm_clip = args.grad_norm_clip self.target_update_cycle = args.target_update_cycle if self.args.cuda: self.cuda = True self.eval_rnn.cuda() self.target_rnn.cuda() self.eval_qmix_net.cuda() self.target_qmix_net.cuda() else: self.cuda = False self.model_dir = args.save_path # 如果存在模型则加载模型 if self.args.load_model: if os.path.exists(self.model_dir + '/rnn_net_params.pkl'): path_rnn = self.model_dir + '/rnn_net_params.pkl' path_qmix = self.model_dir + '/qmix_net_params.pkl' map_location = 'cuda:0' if self.args.cuda else 'cpu' self.eval_rnn.load_state_dict( torch.load(path_rnn, map_location=map_location)) self.eval_qmix_net.load_state_dict( torch.load(path_qmix, map_location=map_location)) print('Successfully load the model: {} and {}'.format( path_rnn, path_qmix)) else: raise Exception("No model!") # 让target_net和eval_net的网络参数相同 self.target_rnn.load_state_dict(self.eval_rnn.state_dict()) self.target_qmix_net.load_state_dict(self.eval_qmix_net.state_dict()) self.eval_parameters = list(self.eval_qmix_net.parameters()) + list( self.eval_rnn.parameters()) if args.optimizer == "RMS": self.optimizer = torch.optim.RMSprop(self.eval_parameters, lr=args.lr) # 执行过程中,要为每个agent都维护一个eval_hidden # 学习过程中,要为每个episode的每个agent都维护一个eval_hidden、target_hidden self.eval_hidden = None self.target_hidden = None print('Init alg QMIX')
class QMIX: def __init__(self, args): self.n_actions = args.n_actions self.n_agents = args.n_agents self.state_shape = args.state_shape self.obs_shape = args.obs_shape input_shape = self.obs_shape # 根据参数决定RNN的输入维度 if args.last_action: input_shape += self.n_actions if args.reuse_network: input_shape += self.n_agents # 神经网络 self.eval_rnn = RNN(input_shape, args) # 每个agent选动作的网络 self.target_rnn = RNN(input_shape, args) self.eval_qmix_net = QMixNet(args) # 把agentsQ值加起来的网络 self.target_qmix_net = QMixNet(args) # 如果存在模型则加载模型 if args.model_dir != '': path_rnn = args.model_dir + '/rnn_net_params.pkl' path_qmix = args.model_dir + '/qmix_net_params.pkl' self.eval_rnn.load_state_dict( torch.load(args.model_dir + '/rnn_net_params.pkl')) self.eval_qmix_net.load_state_dict( torch.load(args.model_dir + '/qmix_net_params.pkl')) print('Successfully load the rnn model {} and the qmix model {}'. format(path_rnn, path_qmix)) # 让target_net和eval_net的网络参数相同 self.target_rnn.load_state_dict(self.eval_rnn.state_dict()) self.target_qmix_net.load_state_dict(self.eval_qmix_net.state_dict()) self.eval_parameters = list(self.eval_qmix_net.parameters()) + list( self.eval_rnn.parameters()) if args.optimizer == "RMS": self.optimizer = torch.optim.RMSprop(self.eval_parameters, lr=args.lr) self.args = args # 执行过程中,要为每个agent都维护一个eval_hidden # 学习过程中,要为每个episode的每个agent都维护一个eval_hidden、target_hidden self.eval_hidden = None self.target_hidden = None def learn(self, batch, max_episode_len, train_step): # train_step表示是第几次学习,用来控制更新target_net网络的参数 ''' 在learn的时候,抽取到的数据是四维的,四个维度分别为 1——第几个episode 2——episode中第几个transition 3——第几个agent的数据 4——具体obs维度。因为在选动作时不仅需要输入当前的inputs,还要给神经网络输入hidden_state, hidden_state和之前的经验相关,因此就不能随机抽取经验进行学习。所以这里一次抽取多个episode,然后一次给神经网络 传入每个episode的同一个位置的transition ''' episode_num = batch['o'].shape[0] self.init_hidden(episode_num) for key in batch.keys(): # 把batch里的数据转化成tensor if key == 'u': batch[key] = torch.tensor(batch[key], dtype=torch.long) else: batch[key] = torch.tensor(batch[key], dtype=torch.float32) s, s_next, u, r, avail_u, terminated = batch['s'], batch['s_next'], batch['u'], \ batch['r'], batch['avail_u'], batch['terminated'] avail_u_next = avail_u[:, 1:] # 下一个obs可以执行的动作,要用来计算target_q mask = 1 - batch["padded"].float() # 用来把那些填充的经验的TD-error置0,从而不让它们影响到学习 # 得到每个agent对应的Q值,维度为(episode个数, max_episode_len, n_agents, n_actions) q_evals, q_targets = self.get_q_values(batch, max_episode_len) # 取每个agent动作对应的Q值,并且把最后不需要的一维去掉,因为最后一维只有一个值了 q_evals = torch.gather(q_evals, dim=3, index=u).squeeze(3) # 得到真正的target_q # 传入的avail_u_next参数和q_targets维度一样,这样每个都对应起来,只要为0,就证明在该episode中,该transition上该agent不能执行该动作 q_targets[avail_u_next == 0.0] = -9999999 q_targets = q_targets.max(dim=3)[0] q_total_eval = self.eval_qmix_net.forward(q_evals, s) q_total_target = self.target_qmix_net.forward(q_targets, s_next) targets = r + self.args.gamma * q_total_target * (1 - terminated) td_error = (q_total_eval - targets.detach()) # TODO 还差一个括号,有没有影响 masked_td_error = mask * td_error # 抹掉填充的经验的td_error # loss = masked_td_error.pow(2).mean() # 不能直接用mean,因为还有许多经验是没用的,所以要求和再比真实的经验数,才是真正的均值 loss = (masked_td_error**2).sum() / mask.sum() # a = self.eval_qmix_net.named_parameters() # for i in a: # print(i) # print('train_step is {}'.format(train_step)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() if train_step > 0 and train_step % self.args.target_update_cycle == 0: self.target_rnn.load_state_dict(self.eval_rnn.state_dict()) self.target_qmix_net.load_state_dict( self.eval_qmix_net.state_dict()) def _get_inputs(self, batch, transition_idx): # 取出所有episode上该transition_idx的经验,u_onehot要取出所有,因为要用到上一条 obs, obs_next, u_onehot = batch['o'][:, transition_idx], \ batch['o_next'][:, transition_idx], batch['u_onehot'][:] episode_num = obs.shape[0] inputs, inputs_next = [], [] inputs.append(obs) inputs_next.append(obs_next) # 给obs添加上一个动作、agent编号 if self.args.last_action: if transition_idx == 0: # 如果是第一条经验,就让前一个动作为0向量 inputs.append(torch.zeros_like(u_onehot[:, transition_idx])) else: inputs.append(u_onehot[:, transition_idx - 1]) inputs_next.append(u_onehot[:, transition_idx]) if self.args.reuse_network: # 因为当前的obs三维的数据,每一维分别代表(episode编号,agent编号,obs维度),直接在dim_1上添加对应的向量 # 即可,比如给agent_0后面加(1, 0, 0, 0, 0),表示5个agent中的0号。而agent_0的数据正好在第0行,那么需要加的 # agent编号恰好就是一个单位矩阵,即对角线为1,其余为0 inputs.append( torch.eye(self.args.n_agents).unsqueeze(0).expand( episode_num, -1, -1)) inputs_next.append( torch.eye(self.args.n_agents).unsqueeze(0).expand( episode_num, -1, -1)) # 要把obs中的三个拼起来,并且要把episode_num个episode、self.args.n_agents个agent的数据拼成40条(40,96)的数据, # 因为这里所有agent共享一个神经网络,每条数据中带上了自己的编号,所以还是自己的数据 inputs = torch.cat( [x.reshape(episode_num * self.args.n_agents, -1) for x in inputs], dim=1) inputs_next = torch.cat([ x.reshape(episode_num * self.args.n_agents, -1) for x in inputs_next ], dim=1) # TODO 检查inputs_next是不是相当于inputs向后移动一条 return inputs, inputs_next def get_q_values(self, batch, max_episode_len): episode_num = batch['o'].shape[0] q_evals, q_targets = [], [] for transition_idx in range(max_episode_len): inputs, inputs_next = self._get_inputs( batch, transition_idx) # 给obs加last_action、agent_id q_eval, self.eval_hidden = self.eval_rnn.forward( inputs, self.eval_hidden ) # inputs维度为(40,96),得到的q_eval维度为(40,n_actions) q_target, self.target_hidden = self.target_rnn.forward( inputs_next, self.target_hidden) # 把q_eval维度重新变回(8, 5,n_actions) q_eval = q_eval.view(episode_num, self.n_agents, -1) q_target = q_target.view(episode_num, self.n_agents, -1) q_evals.append(q_eval) q_targets.append(q_target) # 得的q_eval和q_target是一个列表,列表里装着max_episode_len个数组,数组的的维度是(episode个数, n_agents,n_actions) # 把该列表转化成(episode个数, max_episode_len, n_agents,n_actions)的数组 q_evals = torch.stack(q_evals, dim=1) q_targets = torch.stack(q_targets, dim=1) return q_evals, q_targets def init_hidden(self, episode_num): # 为每个episode中的每个agent都初始化一个eval_hidden、target_hidden self.eval_hidden = self.eval_rnn.init_hidden().unsqueeze(0).expand( episode_num, self.n_agents, -1) self.target_hidden = self.target_rnn.init_hidden().unsqueeze(0).expand( episode_num, self.n_agents, -1) def save_model(self, train_step): num = str(train_step // self.args.save_cycle) torch.save(self.eval_qmix_net.state_dict(), self.args.result_dir + '/' + num + '_qmix_net_params.pkl') torch.save(self.eval_rnn.state_dict(), self.args.result_dir + '/' + num + '_rnn_net_params.pkl')