def create_perceptualnet(opt): # Get the first 15 layers of vgg16, which is conv3_3 perceptualnet = network.PerceptualNet() # Pre-trained VGG-16 pretrained_dict = torch.load(opt.perceptual_path) load_dict(perceptualnet, pretrained_dict) # It does not gradient for param in perceptualnet.parameters(): param.requires_grad = False return perceptualnet
def create_perceptualnet(): # Pre-trained VGG-16 vgg16 = torch.load('vgg16_pretrained.pth') # Get the first 16 layers of vgg16, which is conv3_3 perceptualnet = network.PerceptualNet() # Update the parameters load_dict(perceptualnet, vgg16) # It does not gradient for param in perceptualnet.parameters(): param.requires_grad = False return perceptualnet
def create_perceptualnet(): # Get the first 15 layers of vgg16, which is conv3_3 perceptualnet = network.PerceptualNet() # Pre-trained VGG-16 vgg16 = torch.load('./vgg16_pretrained.pth') load_dict(perceptualnet, vgg16) # It does not gradient for param in perceptualnet.parameters(): param.requires_grad = False print('Perceptual network is created!') return perceptualnet
def create_perceptualnet(): # Initialize the network perceptualnet = network.PerceptualNet() vgg16 = tv.models.vgg16(pretrained = True) # Init the network load_dict(perceptualnet, vgg16) print('PerceptualNet is created!') # It does not gradient for param in perceptualnet.parameters(): param.requires_grad = False return perceptualnet
def create_perceptualnet(): # Get the first 15 layers of vgg16, which is conv3_3 perceptualnet = network.PerceptualNet() print('Perceptual network is created!') return perceptualnet