示例#1
0
def degree_vaccination(infile, outfile, k):
    """
    Change the state (to VACCINATED) of the top k (%) highly-connected 
    individuals in population contained in infile, and save the altered 
    population into outfile. 
    """

    fh = open(infile, "r")
    params = pickle.load(fh)
    population = pickle.load(fh)
    fh.close()
    net = network.build_network(population, params["network_topology"],
                                params["network_params"])
    L = networkx.degree_centrality(net.get_structure()).items()
    L = sorted(L, key=operator.itemgetter(1), reverse=True)
    n = int(k / 100.0 * len(population))
    for i in range(0, n):
        person = population[L[i][0]]
        person.set_state(Player.VACCINATED)
        sl = person.get_state_list()
        sl[len(sl) - 1] = Player.VACCINATED
        person.set_infection(0.0)
        il = person.get_infection_list()
        il[len(il) - 1] = 0.0
        person.set_c(0.0)
        cl = person.get_c_list()
        cl[len(cl) - 1] = 0.0
    fh = open(outfile, "w")
    pickle.dump(params, fh)
    pickle.dump(population, fh)
    fh.close()
示例#2
0
文件: disease.py 项目: swamiiyer/edcn
def degree_vaccination(infile, outfile, k):
    """
    Change the state (to VACCINATED) of the top k (%) highly-connected 
    individuals in population contained in infile, and save the altered 
    population into outfile. 
    """

    fh = open(infile, "r")
    params = pickle.load(fh)
    population = pickle.load(fh)
    fh.close()
    net = network.build_network(population, params["network_topology"], 
                                params["network_params"])
    L = networkx.degree_centrality(net.get_structure()).items()
    L = sorted(L, key = operator.itemgetter(1), reverse = True)
    n = int(k / 100.0 * len(population))
    for i in range(0, n):
        person = population[L[i][0]]
        person.set_state(Player.VACCINATED)
        sl = person.get_state_list()
        sl[len(sl) - 1] = Player.VACCINATED
        person.set_infection(0.0)
        il = person.get_infection_list()
        il[len(il) - 1] = 0.0
        person.set_c(0.0)
        cl = person.get_c_list()
        cl[len(cl) - 1] = 0.0
    fh = open(outfile, "w")
    pickle.dump(params, fh)
    pickle.dump(population, fh)
    fh.close()
示例#3
0
文件: disease.py 项目: swamiiyer/edcn
def random_vaccination(infile, outfile, k):
    """
    Change the state (to VACCINATED) of k (%) individuals in population 
    contained in infile, and save the altered population into outfile. Each of 
    these individuals is randomly picked. 
    """

    fh = open(infile, "r")
    params = pickle.load(fh)
    population = pickle.load(fh)
    fh.close()
    net = network.build_network(population, params["network_topology"], 
                                params["network_params"])
    m = int(k / 100.0 * len(population))
    i = 0
    while i < m:
        person = net.get_random_vertex()
        if person == None or person.get_state() == Player.VACCINATED:
            continue
        person.set_state(Player.VACCINATED)
        sl = person.get_state_list()
        sl[len(sl) - 1] = Player.VACCINATED
        person.set_infection(0.0)
        il = person.get_infection_list()
        il[len(il) - 1] = 0.0
        person.set_c(0.0)
        cl = person.get_c_list()
        cl[len(cl) - 1] = 0.0
        i += 1
    fh = open(outfile, "w")
    pickle.dump(params, fh)
    pickle.dump(population, fh)
    fh.close()
示例#4
0
def random_vaccination(infile, outfile, k):
    """
    Change the state (to VACCINATED) of k (%) individuals in population 
    contained in infile, and save the altered population into outfile. Each of 
    these individuals is randomly picked. 
    """

    fh = open(infile, "r")
    params = pickle.load(fh)
    population = pickle.load(fh)
    fh.close()
    net = network.build_network(population, params["network_topology"],
                                params["network_params"])
    m = int(k / 100.0 * len(population))
    i = 0
    while i < m:
        person = net.get_random_vertex()
        if person == None or person.get_state() == Player.VACCINATED:
            continue
        person.set_state(Player.VACCINATED)
        sl = person.get_state_list()
        sl[len(sl) - 1] = Player.VACCINATED
        person.set_infection(0.0)
        il = person.get_infection_list()
        il[len(il) - 1] = 0.0
        person.set_c(0.0)
        cl = person.get_c_list()
        cl[len(cl) - 1] = 0.0
        i += 1
    fh = open(outfile, "w")
    pickle.dump(params, fh)
    pickle.dump(population, fh)
    fh.close()
示例#5
0
文件: train.py 项目: pfkevinma/ecg
def train(args, params):

    print("Loading training set...")
    train = load.load_dataset(params['train'])
    print("Loading dev set...")
    dev = load.load_dataset(params['dev'])
    print("Building preprocessor...")
    preproc = load.Preproc(*train)
    print("train_set_classes:", preproc.classes)
    print("Training size: " + str(len(train[0])) + " examples.")
    print("Dev size: " + str(len(dev[0])) + " examples.")

    save_dir = make_save_dir(params['save_dir'], args.experiment)

    util.save(preproc, save_dir)

    params.update({
        "input_shape": [None, 1],
        "num_categories": len(preproc.classes)
    })

    model = network.build_network(**params)

    stopping = keras.callbacks.EarlyStopping(patience=30)

    reduce_lr = keras.callbacks.ReduceLROnPlateau(
        factor=0.1, patience=2, min_lr=params["learning_rate"] * 0.001)

    checkpointer = keras.callbacks.ModelCheckpoint(
        filepath=get_filename_for_saving(save_dir), save_best_only=False)

    batch_size = params.get("batch_size", 32)

    # summary = str(model.summary(print_fn=lambda x: fh.write(x + '\n')))
    # out = open("/content/ecg/report.txt",'w')
    # out.write(summary)
    # out.close

    if params.get("generator", False):
        train_gen = load.data_generator(batch_size, preproc, *train)
        dev_gen = load.data_generator(batch_size, preproc, *dev)
        model.fit_generator(train_gen,
                            steps_per_epoch=int(len(train[0]) / batch_size),
                            epochs=MAX_EPOCHS,
                            validation_data=dev_gen,
                            validation_steps=int(len(dev[0]) / batch_size),
                            callbacks=[checkpointer, reduce_lr, stopping])
        # util.learning_curve(history)

    else:
        train_x, train_y = preproc.process(*train)
        dev_x, dev_y = preproc.process(*dev)
        model.fit(train_x,
                  train_y,
                  batch_size=batch_size,
                  epochs=MAX_EPOCHS,
                  validation_data=(dev_x, dev_y),
                  callbacks=[checkpointer, reduce_lr, stopping])
示例#6
0
def main(restored_model=None, test_model=None, phase='training'):

    source_train_list = _read_lists(source_train_fid)
    source_val_list = _read_lists(source_val_fid)
    target_train_list = _read_lists(target_train_fid)
    target_val_list = _read_lists(target_val_fid)

    network = build_network(channels=3,
                            n_class=5,
                            batch_size=1,
                            cost_kwargs=cost_kwargs,
                            network_config=network_config,
                            opt_kwargs=opt_kwargs)

    logging.info("Network built")

    trainer = Trainer(net = network,\
                      source_train_list = source_train_list,\
                      source_val_list = source_val_list,\
                      target_train_list = target_train_list,\
                      target_val_list = target_val_list, \
                      output_path = output_path, \
                      opt_kwargs = opt_kwargs,\
                      num_epochs = 750,\
                      checkpoint_space = 300)

    # start tensorboard before getting started
    command2 = "fuser " + opt_kwargs["port"] + "/tcp -k"
    os.system(command2)
    command1 = "tensorboard --logdir=" + output_path + " --port=" + opt_kwargs[
        "port"] + " &"
    os.system(command1)

    if phase == 'training':
        trainer.train_segmenter(restored_model=restored_model)

    if phase == 'testing':
        # here are for the testing phase
        test_list_fid = "/home/chenxi/dlummkd/test_mr_list"
        test_nii_list_fid = "/home/chenxi/dlummkd/test_mr_nii_list"
        part = "source"
        logging.info('performance on source ...')
        source_dice = trainer.test(test_model=test_model,
                                   part=part,
                                   test_list_fid=test_list_fid,
                                   test_nii_list_fid=test_nii_list_fid)

        test_list_fid = "/home/chenxi/dlummkd/test_ct_list"
        test_nii_list_fid = "/home/chenxi/dlummkd/test_ct_nii_list"
        part = "target"
        logging.info('performance on target ...')
        target_dice = trainer.test(test_model=test_model,
                                   part=part,
                                   test_list_fid=test_list_fid,
                                   test_nii_list_fid=test_nii_list_fid)

        return source_dice, target_dice
示例#7
0
def static_nem_iterations(input_data, target_data, binary, k):
    # Get dimensions
    input_shape = tf.shape(input_data)
    assert input_shape.get_shape()[0].value == 6, "Requires 6D input (T, B, K, W, H, C) but {}".format(input_shape.get_shape()[0].value)
    W, H, C = (x.value for x in input_data.get_shape()[-3:])

    # set pixel distribution
    pixel_dist = 'bernoulli' if binary else 'gaussian'

    # set up inner cells and nem cells
    inner_cell = build_network(W * H * C, output_dist=pixel_dist)
    nem_cell = NEMCell(inner_cell, input_shape=(W, H, C), distribution=pixel_dist)

    # compute prior
    prior = compute_prior(distribution=pixel_dist)

    # get state initializer
    with tf.name_scope('initial_state'):
        hidden_state = nem_cell.init_state(input_shape[1], k, dtype=tf.float32)

    # build static iterations
    outputs = [hidden_state]
    total_losses, upper_bound_losses, other_losses = [], [], []
    loss_step_weights = get_loss_step_weights()

    with tf.variable_scope('NEM') as varscope:
        for t, loss_weight in enumerate(loss_step_weights):
            varscope.reuse_variables() if t > 0 else None       # share weights across time
            with tf.name_scope('step_{}'.format(t)):
                # run nem cell
                inputs = (input_data[t], target_data[t+1])
                hidden_state, output = nem_cell(inputs, hidden_state)
                theta, pred, gamma = output

                # compute nem losses
                total_loss, intra_loss, inter_loss = compute_outer_loss(
                    pred, gamma, target_data[t+1], prior, pixel_distribution=pixel_dist)

                # compute estimated loss upper bound (which doesn't use E-step)
                loss_upper_bound = compute_loss_upper_bound(pred, target_data[t+1], pixel_dist)

            total_losses.append(loss_weight * total_loss)
            upper_bound_losses.append(loss_upper_bound)
            other_losses.append(tf.stack([total_loss, intra_loss, inter_loss]))
            outputs.append(output)

    # collect outputs
    with tf.name_scope('collect_outputs'):
        thetas, preds, gammas = zip(*outputs)
        thetas = tf.stack(thetas)               # (T, 1, B*K, M)
        preds = tf.stack(preds)                 # (T, B, K, W, H, C)
        gammas = tf.stack(gammas)               # (T, B, K, W, H, C)
        other_losses = tf.stack(other_losses)   # (T, 3)
        upper_bound_losses = tf.stack(upper_bound_losses)  # (T,)
    with tf.name_scope('total_loss'):
        total_loss = tf.reduce_sum(tf.stack(total_losses))
    return total_loss, thetas, preds, gammas, other_losses, upper_bound_losses
示例#8
0
    def __init__(self, board_state, batch_size=256):
        ''' 
			Constructor for DQNAgent
			Input: board_state, (for getting the input_shape of teh network we will train)
		'''
        num_cols = board_state.shape[-1]
        self.n_actions = num_cols

        self.net = build_network(input_shape=board_state.shape,
                                 num_outputs=self.n_actions)
        self.target_net = build_network(input_shape=board_state.shape,
                                        num_outputs=self.n_actions)
        self.target_net.set_weights(self.net.get_weights())
        self.net_optimizer = tf.train.AdamOptimizer()

        self.memory = Memory(batch_size)

        self.curr_obs = None
        self.curr_action = None
示例#9
0
 def _build_graph(self):
     encoder = build_network(inputs=self.datapipe.next_element,
                             model_specs=self.network_specs['encoder'],
                             latent_dim=self.latent_dim,
                             name='encoder')
     self.mu, self.logvar = tf.split(encoder,
                                     [self.latent_dim, self.latent_dim],
                                     axis=1)
     self.z_samples = misc.sampler_normal(self.mu, self.logvar)
     self._build_decoder(self.z_samples)
示例#10
0
def train(args, params):

    print("Loading training set...")
    train = load.load_dataset(params['train'])
    print("Loading dev set...")
    dev = load.load_dataset(params['dev'])
    print("Building preprocessor...")
    preproc = load.Preproc(*train)
    print("Training size: " + str(len(train[0])) + " examples.")
    print("Dev size: " + str(len(dev[0])) + " examples.")

    save_dir = make_save_dir(params['save_dir'], args.experiment)

    util.save(preproc, save_dir)

    params.update({
        "input_shape": [None, 1],
        "num_categories": len(preproc.classes)
    })
    print(params)

    model = network.build_network(**params)

    stopping = keras.callbacks.EarlyStopping(patience=8)

    reduce_lr = keras.callbacks.ReduceLROnPlateau(
        factor=0.1, patience=2, min_lr=params["learning_rate"] * 0.001)

    checkpointer = keras.callbacks.ModelCheckpoint(
        filepath=get_filename_for_saving(save_dir), save_best_only=False)
    ckpt_best = keras.callbacks.ModelCheckpoint(os.path.join(
        save_dir, 'best.hdf5'),
                                                save_best_only=True)

    batch_size = params.get("batch_size", 32)

    if params.get("generator", False):
        train_gen = load.data_generator(batch_size, preproc, *train)
        dev_gen = load.data_generator(batch_size, preproc, *dev)
        model.fit_generator(
            train_gen,
            steps_per_epoch=int(len(train[0]) / batch_size),
            epochs=MAX_EPOCHS,
            validation_data=dev_gen,
            validation_steps=int(len(dev[0]) / batch_size),
            callbacks=[checkpointer, ckpt_best, reduce_lr, stopping])
    else:
        train_x, train_y = preproc.process(*train)
        dev_x, dev_y = preproc.process(*dev)
        model.fit(train_x,
                  train_y,
                  batch_size=batch_size,
                  epochs=MAX_EPOCHS,
                  validation_data=(dev_x, dev_y),
                  callbacks=[checkpointer, ckpt_best, reduce_lr, stopping])
示例#11
0
文件: train.py 项目: yangbinfeng/ecg
def train(args, params):

    print("Loading training set...")
    train = load.load_dataset(params['train'])
    print("Loading dev set...")
    dev = load.load_dataset(params['dev'])
    print("Building preprocessor...")
    preproc = load.Preproc(*train)
    print("Training size: " + str(len(train[0])) + " examples.")
    print("Dev size: " + str(len(dev[0])) + " examples.")


    save_dir = make_save_dir(params['save_dir'], args.experiment)

    util.save(preproc, save_dir)

    params.update({
        "input_shape": [None, 1],
        "num_categories": len(preproc.classes)
    })

    model = network.build_network(**params)

    stopping = keras.callbacks.EarlyStopping(patience=8)

    reduce_lr = keras.callbacks.ReduceLROnPlateau(
        factor=0.1,
        patience=2,
        min_lr=params["learning_rate"] * 0.001)

    checkpointer = keras.callbacks.ModelCheckpoint(
        filepath=get_filename_for_saving(save_dir),
        save_best_only=False)

    batch_size = params.get("batch_size", 32)

    if params.get("generator", False):
        train_gen = load.data_generator(batch_size, preproc, *train)
        dev_gen = load.data_generator(batch_size, preproc, *dev)
        model.fit_generator(
            train_gen,
            steps_per_epoch=int(len(train[0]) / batch_size),
            epochs=MAX_EPOCHS,
            validation_data=dev_gen,
            validation_steps=int(len(dev[0]) / batch_size),
            callbacks=[checkpointer, reduce_lr, stopping])
    else:
        train_x, train_y = preproc.process(*train)
        dev_x, dev_y = preproc.process(*dev)
        model.fit(
            train_x, train_y,
            batch_size=batch_size,
            epochs=MAX_EPOCHS,
            validation_data=(dev_x, dev_y),
            callbacks=[checkpointer, reduce_lr, stopping])
示例#12
0
 def _build_encoder(self, inputs):
     encoder = build_network(inputs=inputs,
                             model_specs=self.network_specs['encoder'],
                             latent_dim=self.network_specs['latent_dim'],
                             name='encoder')
     z_mean, z_logvar = tf.split(encoder, [
         self.network_specs['latent_dim'], self.network_specs['latent_dim']
     ],
                                 axis=1)
     z_samples = sampler_normal(z_mean, z_logvar)
     return z_mean, z_logvar, z_samples
示例#13
0
    def _build_decoder(self, inputs):
        logits = build_network(inputs=inputs,
                               model_specs=self.network_specs['decoder'],
                               num_channel=self.network_specs['num_channel'],
                               name='decoder')
        re_mask, re_image_mean = tf.split(logits, [1, 3], axis=-1)

        # i think this should be trained with tf.nn.sigmoid
        # because the means should be between 0 and 1
        if self.sigmoid_output:
            re_image_mean = tf.nn.sigmoid(re_image_mean)
        return re_mask, re_image_mean
示例#14
0
def main():

    communities_t0, number_nodes_t0, nodes_t0 = build_communities()

    build_network(communities_t0, number_nodes_t0, nodes_t0)

    if write_gephi:
        write_links_csv(nodes_t0)

    for Ts.timestamp in range(1, TIMESTEPS+1):

        communities_t1, number_nodes_t1, nodes_t1 = build_communities()

        # initialize confusion matrix with deaths and births
        confusion_matrix = events_communities(communities_t0, nodes_t0, communities_t1, nodes_t1, number_nodes_t1)

        # find most similar transition
        score, global_solution = transition_t0_t1(communities_t0, communities_t1)

        # finalize confusion matrix
        flow_nodes(communities_t0, communities_t1, nodes_t1, global_solution, confusion_matrix)

        match_communities(communities_t0, communities_t1, confusion_matrix, sigma, jaccard_null_model)

        build_network(communities_t1, number_nodes_t1, nodes_t1)

        if write_gephi:
            write_links_csv(nodes_t1)

        printouts(confusion_matrix, score, communities_t0, communities_t1)

        communities_t0, nodes_t0 = turnover_communities(communities_t1, nodes_t1)

        #    [node.reset_node_links() for node in nodes_t1]

    if write_gephi:
        write_nodes_csv()

    if write_netgram:
        write_nodes_netgram()
示例#15
0
def mypredict(args):
    # ecg = load.load_ecg(record +".mat")
    if args.data_fname[-3:] == "npy":
        x_test = np.load(args.data_fname)
    elif args.data_fname[-3:] == "csv":
        x_test = pd.read_csv(args.data_fname)
        x_test.drop(['id'], axis=1)
        x_test = x_test.fillna(0)
        x_test = x_test.values
        np.save(args.data_fname[:-4], x_test)

    print("data loading done")
    x_test_list = []
    for i in range(len(x_test)):
        x_i_end = x_test[i].nonzero()[0][-1] + 1
        x_i_end = STEP * int((x_i_end) / STEP)
        # print(x_i_end)
        x_test_list.append(x_test[i][:x_i_end])

    preproc = util.load(args.prep_fname)
    x_test = preproc.process_x(x_test_list)

    params = json.load(open(args.config_fname))
    params.update({
        "compile": False,
        "input_shape": [None, 1],
        "num_categories": len(preproc.classes)
    })

    model = network.build_network(**params)
    model.load_weights(args.model_fname)

    # print(x_test.shape)
    probs = model.predict(x_test)
    preds = np.argmax(probs, axis=2)
    results = -np.ones((len(x_test), ), dtype=np.int64)
    for i in range(len(x_test)):
        # print(len(x_test_list[i])//STEP)
        # print(preds[i, :len(x_test_list[i])//STEP])
        # print(sst.mode(preds[i, :len(x_test_list[i])//STEP])[0][0])

        results[i] = sst.mode(preds[i, :len(x_test_list[i]) // STEP])[0][0]
    # print(probs.shape)
    # prediction = sst.mode(np.argmax(probs, axis=2).squeeze())[0][0]
    print(Counter(results))

    sample = pd.read_csv(args.sample_fname)
    sample['y'] = results
    sample.to_csv(args.submit_fname, index=False)
    return
示例#16
0
 def __init__(self, inputSimulator, preprocessor, pretrained):
     self.iS = inputSimulator
     self.pP = preprocessor
     self.input_var = T.tensor4('input')
     self.network = build_network(6, self.input_var, (20,20))
     
     self.prediction = lasagne.layers.get_output(self.network, deterministic=True)
     self.x = np.zeros((1,4,20,20),np.int8)
     
     if pretrained:
         self.loadParams()
     
     print("Compiling network")
     self.pred_fn = theano.function([self.input_var], self.prediction, allow_input_downcast=True)
     print("Compiling done")
  def __init__(self, W, H, n_input, lr, n_h1=25, n_h2=20, l2=10, name='deep_irl_fc'):
    self.n_input = n_input
    self.lr = lr
    self.n_h1 = n_h1
    self.n_h2 = n_h2
    self.name = name
    self.networks = build_network(W, H)
    # self.network = self.network.cuda()

    self.finetune(allow=True)

    # self.sess = tf.Session()
    # self.input_s, self.reward, self.theta = self.build_network(self.name)
    self.optimizer = optim.SGD(self.networks.parameters(), lr=0.001)
    # self.optimizer = tf.train.GradientDescentOptimizer(lr)

    self.l2_loss = nn.MSELoss()
示例#18
0
文件: evaler.py 项目: sirexeclp/ecg-1
def predict(record):
    ecg = load.load_ecg(record +".mat")
    preproc = util.load(".")
    x = preproc.process_x([ecg])

    params = json.load(open("config.json"))
    params.update({
        "compile" : False,
        "input_shape": [None, 1],
        "num_categories": len(preproc.classes)
    })

    model = network.build_network(**params)
    model.load_weights('model.hdf5')

    probs = model.predict(x)
    prediction = sst.mode(np.argmax(probs, axis=2).squeeze())[0][0]
    return preproc.int_to_class[prediction]
示例#19
0
def train(session, dataset):
    network = network_mod.build_network(dataset.image_shape,
                                        dataset.num_classes)

    session.run(tf.global_variables_initializer())
    file_writer = tf.summary.FileWriter("logs/", graph=session.graph)
    saver = tf.train.Saver()

    ts = TrainingSession(
        session=session,
        network=network,
        dataset=dataset,
        file_writer=file_writer,
        saver=saver,
        learning_rate=config.INITIAL_LEARNING_RATE,
    )

    for epoch_idx in range(1, config.NUM_EPOCHS + 1):
        ts = train_epoch(ts, epoch_idx)
示例#20
0
def mylimepredict(ecg):

    preproc = util.load(".")
    x = preproc.process_x(ecg)
    params = json.load(open("config.json"))
    params.update({
        "compile": False,
        "input_shape": [None, 1],
        "num_categories": len(preproc.classes)
    })

    model = network.build_network(**params)
    model.load_weights('model.hdf5')

    probs = model.predict(x)
    classprobs = np.amax(probs, axis=1)
    prediction = sst.mode(np.argmax(probs, axis=2).squeeze())[0][0]

    #   predictionclass = preproc.int_to_class[prediction]
    #   print prediction, predictionclass
    return classprobs
示例#21
0
train_word_y = np.expand_dims(data["train_word"][1], -1)
train_orth_char_x = data["orth_char"][0]
train_orth_x = data["train_orth"]
n_train_examples = len(train_word_x)

dev_char_x = data["char"][1]
dev_word_x = data["dev_word"][0]
dev_word_y = data["dev_word"][1]
dev_mask = data["dev_word"][2]
dev_orth_char_x = data["orth_char"][1]
dev_orth_x = data["dev_orth"]
n_dev_examples = len(dev_word_x)

# Build network
logger.info("Building network")
model = network.build_network(args, data)
num_labels = data["label_collection"].size() - 1

# Compiling model
logger.info("Compiling model")
model.compile(optimizer="adam",
              loss=model.layers[-1].loss,
              metrics=["accuracy"])

# Callbacks
loss_train = []
acc_train = []
loss_history = keras.callbacks.LambdaCallback(
    on_epoch_end=lambda epoch, logs: loss_train.append(logs['loss']))
acc_history = keras.callbacks.LambdaCallback(
    on_epoch_end=lambda epoch, logs: acc_train.append(logs['acc'] * 100.0))
示例#22
0
文件: test.py 项目: R06942112/OCR
def test():
    tf.reset_default_graph()
    infer_graph = tf.Graph()

    with infer_graph.as_default():
        encoder_outputs_t, inputs_t = build_cnn(False, flags.batch_size,
                                                flags.height, flags.width,
                                                flags.channels)
        _, _, pred_ids, logits_t, decoder_inputs_t, \
        _, _ ,keep_prob_t= build_network(encoder_outputs_t,
                             True,
                             flags.batch_size,
                             flags.decoder_length,
                             flags.tgt_vocab_size,
                             flags.attn_num_hidden,
                             flags.encoder_length,
                             flags.max_gradient_norm
                             )
        infer_saver = tf.train.Saver()
    infer_sess = tf.Session(graph=infer_graph)
    model_file = tf.train.latest_checkpoint(flags.load_dir)
    infer_saver.restore(infer_sess, model_file)

    with open(flags.test_txt) as f:
        test = [line.rstrip() for line in f]
    test_len = len(test)
    test = np.array(test)
    data_test = Dataset(test)
    if flags.lex_txt != None:
        with open(flags.lex_txt) as f:
            lex = [line.rstrip().lower() for line in f]

    ti = int(test_len / flags.batch_size)
    rest = test_len % flags.batch_size

    gt = []
    predict = []

    for t in range(ti):
        batch_test = data_test.next_batch(flags.batch_size)
        path = []
        texts = []
        for line in batch_test:
            path.append(line.split(' ', 1)[0])
            texts.append(line.split(' ', 1)[1])

        images = load_img(path, flags.height, flags.width)

        testing_decoder_inputs = np.zeros(
            (flags.decoder_length, flags.batch_size), dtype=float)
        feed_dict_t = {
            inputs_t: images[:, :, :, np.newaxis],
            decoder_inputs_t: testing_decoder_inputs,
            keep_prob_t: 1
        }
        q = infer_sess.run(pred_ids, feed_dict=feed_dict_t)

        for j in range(flags.batch_size):
            gt.append(texts[j])
            ans = np.array(q).T[j]
            pd = []
            for c in ans:
                if c != -1:
                    character = tools.idx_to_word[c]
                    if character != '<EOS>':
                        pd.append(character)
            predict.append(''.join(pd))

    batch_test = data_test.next_batch(flags.batch_size)
    path = []
    texts = []
    for line in batch_test:
        path.append(line.split(' ', 1)[0])
        texts.append(line.split(' ', 1)[1])
    images = load_img(path, flags.height, flags.width)

    feed_dict_t = {
        inputs_t: images[:, :, :, np.newaxis],
        decoder_inputs_t: testing_decoder_inputs,
        keep_prob_t: 1
    }
    q = infer_sess.run(pred_ids, feed_dict=feed_dict_t)

    for k in range(rest):
        gt.append(texts[k])
        ans = np.array(q).T[k]
        pd = []
        for c in ans:
            if c != -1:
                character = tools.idx_to_word[c]
                if character != '<EOS>':
                    pd.append(character)
        predict.append(''.join(pd))

    correct = float(0)
    cnt = 0
    acc_s = 0

    for l in range(len(gt)):
        cnt = cnt + 1
        if gt[l] == predict[l]:
            correct = correct + 1

    acc_s = correct / cnt
    if flags.lex_txt != None:
        correct_l = float(0)
        cnt = 0
        for l in range(len(gt)):
            cnt = cnt + 1
            lexicon = lex[l].split(',')
            dt = editdistance.eval(predict[l], lexicon[0])
            pl = lexicon[0]
            for ll in lexicon[1:]:
                dt_temp = editdistance.eval(predict[l], ll)

                if dt_temp < dt:
                    dt = dt_temp
                    pl = ll
            if pl == gt[l]:
                correct_l = correct_l + 1

        acc_l = correct_l / cnt

    print('accuracy: ', acc_s)
    if flags.lex_txt != None:
        print('accuracy with lexicon: ', acc_l)
示例#23
0
文件: train.py 项目: R06942112/OCR
def train():
    f_size = int(flags.img_size / 8)
    encoder_length = f_size * f_size

    with open(flags.train_txt) as f:
        sample = [line.rstrip() for line in f]
    sample = np.array(sample)
    iteration = len(sample) // flags.batch_size
    data = Dataset(sample)

    tf.reset_default_graph()
    train_graph = tf.Graph()
    infer_graph = tf.Graph()
    start = time.time()
    with train_graph.as_default():

        c, inputs = build_cnn(is_training=True,
                              batch_size=flags.batch_size,
                              img_size=flags.img_size,
                              channels=flags.channels)
        deconv_outputs = build_deconv(True, c, flags.batch_size)
        x = np.linspace(-0.5, 0.5, f_size)
        x = np.tile(x, (f_size, 1))
        y = np.transpose(x)
        x = np.expand_dims(x, axis=2)
        y = np.expand_dims(y, axis=2)
        m = np.concatenate((x, y), axis=2)
        m = np.expand_dims(m, axis=0)
        m = np.repeat(m, flags.batch_size, axis=0)
        m = tf.convert_to_tensor(m, np.float32)
        encoder_outputs = tf.concat([c, m], -1)
        encoder_outputs = tf.reshape(encoder_outputs,
                                     shape=(-1, f_size * f_size, 258))
        encoder_outputs = tf.transpose(encoder_outputs, [1, 0, 2])

        train_op, loss , sample_ids,logits, decoder_inputs,  \
        target_labels, learning_rate,attention_weights_history,att_label,lamda,att_mask,input_seg= build_network(encoder_outputs,
                                                                                          False,
                                                                                          flags.batch_size,
                                                                                          flags.decoder_length,
                                                                                          flags.tgt_vocab_size,
                                                                                          flags.attn_num_hidden,
                                                                                          encoder_length,
                                                                                          flags.max_gradient_norm,
                                                                                          f_size,
                                                                                          flags.att_loss,
                                                                                          flags.img_size,
                                                                                          deconv_outputs
                                                                                          )
        initializer = tf.global_variables_initializer()
        train_saver = tf.train.Saver()

    train_sess = tf.Session(graph=train_graph)
    train_sess.run(initializer)

    with infer_graph.as_default():
        c_t, inputs_t = build_cnn(is_training=False,
                                  batch_size=flags.batch_size,
                                  img_size=flags.img_size,
                                  channels=flags.channels)
        deconv_outputs_t = build_deconv(False, c_t, flags.batch_size)

        x_t = np.linspace(-0.5, 0.5, f_size)
        x_t = np.tile(x_t, (f_size, 1))
        y_t = np.transpose(x_t)
        x_t = np.expand_dims(x_t, axis=2)
        y_t = np.expand_dims(y_t, axis=2)
        m_t = np.concatenate((x_t, y_t), axis=2)
        m_t = np.expand_dims(m_t, axis=0)
        m_t = np.repeat(m_t, flags.batch_size, axis=0)
        m_t = tf.convert_to_tensor(m_t, np.float32)
        encoder_outputs_t = tf.concat([c_t, m_t], -1)
        encoder_outputs_t = tf.reshape(encoder_outputs_t,
                                       shape=(-1, f_size * f_size, 258))
        encoder_outputs_t = tf.transpose(encoder_outputs_t, [1, 0, 2])

        _, _ , pred_ids,logits_t, decoder_inputs_t,  \
            _, _,_,_,_,_,_= build_network(encoder_outputs_t,
                                      True,
                                      flags.batch_size,
                                      flags.decoder_length,
                                      flags.tgt_vocab_size,
                                      flags.attn_num_hidden,
                                      encoder_length,
                                      flags.max_gradient_norm,
                                      f_size,
                                      flags.att_loss,
                                      flags.img_size,
                                      deconv_outputs_t
                                      )
        infer_saver = tf.train.Saver()
    infer_sess = tf.Session(graph=infer_graph)

    # Training

    la = 10
    acc_log = 0
    count = 0
    lr = flags.learning_rate
    for h in range(flags.epoch):
        for i in range(iteration):
            batch_train = data.next_batch(flags.batch_size)
            path = []
            texts = []
            for line in batch_train:
                path.append(line.split(' ')[0])
                texts.append(line.split(' ')[1])

            if flags.att_loss:
                images, npy, mask, seg = load_img_label(
                    path, flags.img_size, flags.decoder_length)
            else:
                images = load_img(path, flags.img_size)

            training_target_labels = get_label(texts, flags.decoder_length)
            training_decoder_inputs = np.delete(training_target_labels,
                                                -1,
                                                axis=1)
            training_decoder_inputs = np.c_[
                np.zeros(training_decoder_inputs.shape[0]),
                training_decoder_inputs].T
            feed_dict = {
                inputs: images,
                decoder_inputs: training_decoder_inputs,
                target_labels: training_target_labels,
                learning_rate: lr
            }
            if flags.att_loss:
                feed_dict[att_label] = npy
                feed_dict[att_mask] = mask
                feed_dict[input_seg] = seg[:, :, :, np.newaxis]
                feed_dict[lamda] = la
            _, loss_value, att = train_sess.run(
                [train_op, loss, attention_weights_history],
                feed_dict=feed_dict)

            step = float(i + 1)
            if step % flags.display_step == 0:
                now = time.time()
                print(step, now - start, loss_value)
                start = now

            if step % flags.eval_step == 0:
                train_saver.save(train_sess, flags.save_dir)
                model_file = tf.train.latest_checkpoint(
                    flags.save_dir.rsplit('/', 1)[0])
                infer_saver.restore(infer_sess, model_file)

                gt = []
                predict = []

                images = load_img(path, flags.img_size)

                testing_decoder_inputs = np.zeros(
                    (flags.decoder_length, flags.batch_size), dtype=float)
                feed_dict_t = {
                    inputs_t: images,
                    decoder_inputs_t: testing_decoder_inputs
                }
                q = infer_sess.run(pred_ids, feed_dict=feed_dict_t)

                for j in range(flags.batch_size):
                    gt.append(texts[j])
                    ans = np.array(q).T[j]
                    pd = []
                    for c in ans:
                        if c != -1:
                            character = tools.idx_to_word[c]
                            if character != '<EOS>':
                                pd.append(character)
                    predict.append(''.join(pd))

                correct = float(0)
                cnt = 0
                acc_s = 0

                for l in range(len(gt)):
                    cnt = cnt + 1
                    if gt[l] == predict[l]:
                        correct = correct + 1
                count = count + 1
                acc_s = correct / cnt
                if acc_s > acc_log:
                    acc_log = acc_s
                    count = 0
                if count == (iteration // flags.eval_step):
                    lr = lr / 5
示例#24
0
文件: train.py 项目: wonderit/ecg
def train(args, params):

    print("Loading training set...")
    train = load.load_dataset(params['train'])
    print("Loading dev set...")
    dev = load.load_dataset(params['dev'])
    print("Building preprocessor...")
    preproc = load.Preproc(*train)
    print("Training size: " + str(len(train[0])) + " examples.")
    print("Dev size: " + str(len(dev[0])) + " examples.")

    preproc.set_window_size(params['window_size'])

    save_dir = make_save_dir(params['save_dir'], args.experiment)

    util.save(preproc, save_dir)

    print('classes', preproc.classes)

    print("Skip Init initial Alpha : {}, L2 : {}, Lr : {}, batch_size : {}".
          format(params["skip_init_a"], params["conv_l2"],
                 params["learning_rate"], params["batch_size"]))

    params.update({
        "input_shape": [None, 1],
        "num_categories": len(preproc.classes)
    })

    model = network.build_network(**params)
    print(model.summary())
    if params.get('is_regular_conv', False):
        plot_model(model, to_file='model_regular_conv.png', show_shapes=True)
    else:
        if params.get('conv_batch_norm'):
            plot_model(model,
                       to_file='model_residual_conv_bn.png',
                       show_shapes=True)
        else:
            plot_model(model,
                       to_file='model_residual_conv_nobn.png',
                       show_shapes=True)

    stopping = keras.callbacks.EarlyStopping(patience=8)

    reduce_lr = keras.callbacks.ReduceLROnPlateau(
        factor=0.1, patience=2, min_lr=params["learning_rate"] * 0.001)

    # checkpointer = keras.callbacks.ModelCheckpoint(
    #     filepath=get_filename_for_saving(save_dir),
    #     save_best_only=False, save_weights_only=False)
    checkpointer = keras.callbacks.ModelCheckpoint(
        filepath=get_filename_for_saving(save_dir),
        save_weights_only=False,
        save_best_only=True,
        monitor='val_accuracy',
        mode='max',
    )

    batch_size = params.get("batch_size", 32)

    if params.get("generator", False):
        train_gen = load.data_generator(batch_size, preproc, *train)
        dev_gen = load.data_generator(batch_size, preproc, *dev)

        train_gen = np.array(train_gen)
        dev_gen = np.array(dev_gen)
        # print('train_gen m, s: ', train_gen.mean(), train_gen.std())
        # print('train_gen min, max: ', train_gen.min(), train_gen.max())

        print('train_gen shape : ', train_gen.shape)
        print('dev_gen shape : ', train_gen.shape)

        model.fit_generator(train_gen,
                            steps_per_epoch=int(len(train[0]) / batch_size),
                            epochs=params.get("epoch", 10),
                            validation_data=dev_gen,
                            validation_steps=int(len(dev[0]) / batch_size),
                            callbacks=[checkpointer, reduce_lr, stopping])
    else:
        train_x, train_y = preproc.process(*train)
        dev_x, dev_y = preproc.process(*dev)

        print('train_x original shape : ', train_x.shape)
        print('train_y original shape : ', train_y.shape)
        print('test_x original shape : ', dev_x.shape)
        print('test_y original shape : ', dev_y.shape)

        # train_x = np.array(train_x)
        # train_y = np.array(train_y)
        # test_x = np.array(dev_x)
        # test_y = np.array(dev_y)

        window_size = 256
        n_sample = 40

        r_i = 0
        r_length = 1
        # print('random number : ', np.random.choice(test_x.shape[1] // window_size, 1)[0])
        # train_x = train_x[:, 256 * r_i:256 * (r_i+1)* r_length, :]
        # train_y = train_y[:, r_i, :]
        #
        # test_x = test_x[:, 256 * r_i:256 * (r_i+1) * r_length, :]
        # test_y = test_y[:, r_i, :]
        # train_x = np.array(all_train_x)
        # train_y = np.array(all_train_y)

        # FOR PLAINTEXT conversion start
        # get 8 windows
        # train_x = train_x[:, :window_size * n_sample, :]
        # train_y = train_y[:, r_i, :]
        # test_x = test_x[:, :window_size * n_sample, :]
        # test_y = test_y[:, r_i, :]

        # test_x = np.array(random_test_x)
        # train_x = np.array(train_x)
        #
        # train_x = np.squeeze(train_x, axis=(2,))
        # test_x = np.squeeze(test_x, axis=(2,))
        #
        # print('train_x m, s: ', train_x.mean(), train_x.std())
        # print('train_x min, max: ', train_x.min(), train_x.max())
        #
        # print('train_x shape : ', train_x.shape)
        # print('train_y shape : ', train_y.shape)
        # print('test_x shape : ', test_x.shape)
        # print('test_y shape : ', test_y.shape)
        # gt = np.argmax(test_y, axis=1)
        # print('0:', len(gt[gt == 0]))
        # print('1:', len(gt[gt == 1]))
        # print('2:', len(gt[gt == 2]))
        # print('3:', len(gt[gt == 3]))
        # print('gt shape:', gt.shape)

        # data_dir = 'processed_data_2560'
        # data_dir = 'processed_data_5120'
        #
        # if not os.path.exists(data_dir):
        #     os.makedirs(data_dir)
        # train_file_suffix = 'train'
        # test_file_suffix = 'test'
        #
        # file_name_train_x = 'X{}'.format(train_file_suffix)
        # file_name_train_y = 'y{}'.format(train_file_suffix)
        # file_name_test_x = 'X{}'.format(test_file_suffix)
        # file_name_test_y = 'y{}'.format(test_file_suffix)
        #
        # np.savetxt('{}/{}'.format(data_dir, file_name_train_x), train_x, delimiter=',', fmt='%1.8f')
        # np.savetxt('{}/{}'.format(data_dir, file_name_train_y), train_y, delimiter=',', fmt='%1.8f')
        # np.savetxt('{}/{}'.format(data_dir, file_name_test_x), test_x, delimiter=',', fmt='%1.8f')
        # np.savetxt('{}/{}'.format(data_dir, file_name_test_y), test_y, delimiter=',', fmt='%1.8f')
        # print('train_x shape : ', train_x.shape)
        # print('train_y shape : ', train_y.shape)
        # print('test_x shape : ', test_x.shape)
        # print('test_y shape : ', test_y.shape)

        model.fit(train_x,
                  train_y,
                  batch_size=batch_size,
                  epochs=params.get("epoch", 10),
                  validation_data=(dev_x, dev_y),
                  callbacks=[checkpointer, reduce_lr, stopping])
示例#25
0
    def build_model(self, reuse, device):
        with tf.variable_scope(self.name) and tf.device(device):
            if reuse:
                tf.get_variable_scope().reuse_variables()

            # placeholder for inputs of network
            self.screen_ph = tf.placeholder(tf.float32, [
                None,
                U.screen_channel(), self.screen_dimensions,
                self.screen_dimensions
            ],
                                            name='screen')
            self.minimap_ph = tf.placeholder(tf.float32, [
                None,
                U.minimap_channel(), self.minimap_dimensions,
                self.minimap_dimensions
            ],
                                             name='minimap')
            self.structured_ph = tf.placeholder(
                tf.float32, [None, self.structured_dimensions],
                name='structured')

            # build network
            network = build_network(self.structured_ph, self.screen_ph,
                                    self.minimap_ph, len(actions.FUNCTIONS))
            self.non_spatial_action, self.spatial_action, self.value = network

            # placeholder for targets and masks
            self.valid_non_spatial_action_ph = tf.placeholder(
                tf.float32, [None, len(actions.FUNCTIONS)],
                name='valid_non_spatial_action')
            self.sample_non_spatial_action_ph = tf.placeholder(
                tf.float32, [None, len(actions.FUNCTIONS)],
                name='sample_non_spatial_action')
            self.valid_spatial_action_ph = tf.placeholder(
                tf.float32, [None], name='valid_spatial_action')
            self.sample_spatial_action_ph = tf.placeholder(
                tf.float32, [None, self.minimap_dimensions**2],
                name='sample_spatial_action')
            self.target_value_ph = tf.placeholder(tf.float32, [None],
                                                  name='target_value')

            # compute log probability
            valid_non_spatial_action_prob = tf.reduce_sum(
                self.non_spatial_action * self.valid_non_spatial_action_ph,
                axis=1)
            valid_non_spatial_action_prob = tf.clip_by_value(
                valid_non_spatial_action_prob, 1e-10, 1.)
            non_spatial_action_prob = tf.reduce_sum(
                self.non_spatial_action * self.sample_non_spatial_action_ph,
                axis=1)
            non_spatial_action_prob /= valid_non_spatial_action_prob
            non_spatial_action_log_prob = tf.log(
                tf.clip_by_value(non_spatial_action_prob, 1e-10, 1.))
            spatial_action_prob = tf.reduce_sum(self.spatial_action *
                                                self.sample_spatial_action_ph,
                                                axis=1)
            spatial_action_log_prob = tf.log(
                tf.clip_by_value(spatial_action_prob, 1e-10, 1.))
            self.summary.append(
                tf.summary.histogram('non_spatial_action_prob',
                                     non_spatial_action_prob))
            self.summary.append(
                tf.summary.histogram('spatial_action_prob',
                                     spatial_action_prob))

            # compute loss
            action_log_prob = self.valid_spatial_action_ph * spatial_action_log_prob + non_spatial_action_log_prob
            advantage = tf.stop_gradient(self.target_value_ph - self.value)
            policy_loss = -tf.reduce_mean(action_log_prob * advantage)
            value_loss = -tf.reduce_mean(self.value * advantage)
            loss = policy_loss + value_loss
            self.summary.append(tf.summary.scalar('policy_loss', policy_loss))
            self.summary.append(tf.summary.scalar('value_loss', value_loss))

            # optimizer
            self.learning_rate_ph = tf.placeholder(tf.float32,
                                                   None,
                                                   name='learning_rate')
            optimizer = tf.train.RMSPropOptimizer(self.learning_rate_ph,
                                                  decay=0.99,
                                                  epsilon=1e-10)
            grads = optimizer.compute_gradients(loss)
            clipped_grads = []
            for grad, var in grads:
                self.summary.append(tf.summary.histogram(var.op.name, var))
                self.summary.append(
                    tf.summary.histogram(var.op.name + '/grad', grad))
                grad = tf.clip_by_norm(grad, 10.0)
                clipped_grads.append([grad, var])
            self.train_op = optimizer.apply_gradients(clipped_grads)
            self.summary_op = tf.summary.merge(self.summary)

            self.saver = tf.train.Saver(max_to_keep=None)
示例#26
0
文件: a3c.py 项目: g8787856/pysc2-a3c
	def build_model(self, reuse, device):
		with tf.variable_scope(self.name) and tf.device(device):
			# tf.device:指定用於新創建的操作的默認設備。
			if reuse:
				tf.get_variable_scope().reuse_variables()

			"""
			達到重複利用變量的效果,
			要使用tf.variable_scope(),
			並搭配tf.get_variable() 這種方式產生和提取變量.
			不像tf.Variable() 每次都會產生新的變量,
			tf.get_variable () 如果遇到了同樣名字的變量時,
			它會單純的提取這個同樣名字的變量(避免產生新變量).
			而在重複使用的時候,
			一定要在代碼中強調scope.reuse_variables(),
			否則係統將會報錯, 以為你只是單純的不小心重複使用到了一個變量
			"""

			self.screen = tf.placeholder(tf.float32, [None, utils.screen(), self.resolution, self.resolution], name="screen")
			self.minimap = tf.placeholder(tf.float32, [None, utils.minimap(), self.resolution, self.resolution], name="minimap")
			self.structured = tf.placeholder(tf.float32, [None, self.structured_dimensions], name="structured")

			# build network
			network = build_network(self.structured, self.screen, self.minimap, len(actions.FUNCTIONS))
			self.non_spatial_action, self.spatial_action, self.value = network

			self.valid_non_spatial_action = tf.placeholder(tf.float32, [None, len(actions.FUNCTIONS)], name="valid_non_spatial_action")
			self.non_spatial_action_selected = tf.placeholder(tf.float32, [None, len(actions.FUNCTIONS)], name="non_spatial_action_selected")
			self.valid_spatial_action = tf.placeholder(tf.float32, [None], name="valid_spatial_action")
			self.spatial_action_selected = tf.placeholder(tf.float32, [None, self.resolution ** 2], name="spatial_action_selected")
			self.target_value = tf.placeholder(tf.float32, [None], name="target_value")

			# compute log probability
			valid_non_spatial_action_prob = tf.reduce_sum(self.non_spatial_action * self.valid_non_spatial_action, axis=1)
			# tf.reduce_sum:計算張量維度的元素總和。

			valid_non_spatial_action_prob = tf.clip_by_value(valid_non_spatial_action_prob, 1e-5, 1.)
			# tf.clip_by_value: 輸入一個張量A,把A中的每一個元素的值都壓縮在min和max之間。小於min的讓它等於min,大於max的元素的值等於max。

			non_spatial_action_prob = tf.reduce_sum(self.non_spatial_action * self.non_spatial_action_selected, axis=1)
			non_spatial_action_prob /= valid_non_spatial_action_prob

			non_spatial_action_log_prob = tf.log(tf.clip_by_value(non_spatial_action_prob, 1e-5, 1.))

			spatial_action_prob = tf.reduce_sum(self.spatial_action * self.spatial_action_selected, axis=1)
			spatial_action_log_prob = tf.log(tf.clip_by_value(spatial_action_prob, 1e-5, 1.))

			self.summary.append(tf.summary.histogram('non_spatial_action_prob', non_spatial_action_prob))
			self.summary.append(tf.summary.histogram('spatial_action_prob', spatial_action_prob))

			# compute loss !! 尚未加入entropy以及loss_weight
			action_log_prob = self.valid_spatial_action * spatial_action_log_prob + non_spatial_action_log_prob
			
			advantage = tf.stop_gradient(self.target_value - self.value)
			policy_loss = -tf.reduce_mean(action_log_prob * advantage)
			# value_loss = -tf.reduce_mean(self.value * advantage)
			value_loss = tf.reduce_mean(tf.square(self.target_value - self.value) / 2.)
			entropy = 0
			if self.mode == 'original_ac3':
				entropy = -tf.reduce_sum(self.non_spatial_action * tf.log(self.non_spatial_action + 1e-10))
			loss = policy_loss + value_loss * self.value_loss_weight - entropy * self.entropy_weight
			loss = policy_loss + value_loss * self.value_loss_weight - entropy * self.entropy_weight

			self.summary.append(tf.summary.scalar('policy_loss', policy_loss))
			self.summary.append(tf.summary.scalar('value_loss', value_loss))
			self.summary.append(tf.summary.scalar('value', tf.reduce_mean(self.value)))
			self.summary.append(tf.summary.scalar('advantage', tf.reduce_mean(advantage)))
			self.summary.append(tf.summary.scalar('returns', tf.reduce_mean(self.target_value)))

			# optimizer
			self.learning_rate = tf.placeholder(tf.float32, None, name="learning_rate")
			optimizer = tf.train.RMSPropOptimizer(self.learning_rate, decay=0.99, epsilon=1e-10)
			grads = optimizer.compute_gradients(loss)
			clipped_grads = []
			for grad, var in grads:
				self.summary.append(tf.summary.histogram(var.op.name, var))
				self.summary.append(tf.summary.histogram(var.op.name + '/grad', grad))
				grad = tf.clip_by_norm(grad, 10.0)
				clipped_grads.append([grad, var])
			self.train_op = optimizer.apply_gradients(clipped_grads)
			self.summary_op = tf.summary.merge(self.summary)

			self.saver = tf.train.Saver()
示例#27
0
masses = np.random.uniform(0.1, 10.0, (N_PARTICLES))
# get a target scaling
targets = np.random.uniform(10.0, 100.0, (1, N_PARTICLES, 1))


def random_four_vectors(n_data=256):
    momenta = np.random.normal(0.0, 1.0, (n_data, N_PARTICLES, 3))
    energies = np.sqrt(np.sum(momenta**2, axis=-1) + np.sum(masses**2))
    vectors = np.concatenate((np.expand_dims(energies, axis=-1), momenta),
                             axis=-1)
    return np.reshape(vectors, (-1, N_PARTICLES, 4))


network = build_network(n_particles=N_PARTICLES,
                        batch_size=BATCH_SIZE,
                        built_in_noise=BUILT_IN_NOISE)

# Some information about the network
print(network.summary())
print("-" * 20)
print("Trainable Variables:")
for layer in network.layers:
    print("-" * 20)
    print("{}:".format(layer.name))
    print("Trainable Variables:")
    print(layer.trainable_variables)

data = random_four_vectors(n_data=N_DATA)
noise = tf.random.normal((N_DATA, N_PARTICLES, 4), 0.0, 1.0)
print("SHAPE:")
示例#28
0
    print("Loading training set...")
    train = load.load_dataset(params['train'])
    print("Loading dev set...")
    dev = load.load_dataset(params['dev'])
    print("Building preprocessor...")
    preproc = load.Preproc(*train)
    print("Training size: " + str(len(train[0])) + " examples.")
    print("Dev size: " + str(len(dev[0])) + " examples.")

    params.update({
        "input_shape": [8000, 1],
        "num_categories": len(preproc.classes)
    })

    #create the cl-pcg-net
    model = network.build_network(**params)

    #learning rate reduce strategy
    def scheduler(epoch):
        if epoch % 80 == 0 and epoch != 0:
            lr = K.get_value(model.optimizer.lr)
            model.load_weights(save_dir + 'best.hdf5')
            K.set_value(model.optimizer.lr, lr * 0.1)
            print("lr changed to {}".format(lr * 0.1))
        return K.get_value(model.optimizer.lr)

    reduce_lr = LearningRateScheduler(scheduler)

    #choose best model to save
    checkpointer = keras.callbacks.ModelCheckpoint(mode='max',
                                                   monitor='val_acc',
示例#29
0
文件: test.py 项目: R06942112/OCR
def test():

    tf.reset_default_graph()
    infer_graph = tf.Graph()
    
    
    with infer_graph.as_default():
        _, _,  pred_ids,pred_logits , inputs_t, decoder_inputs_t, decoder_lengths_t, \
        _ = build_network(is_training=False,
                                                     batch_size=FLAGS.batch_size,
                                                     height=FLAGS.height,
                                                     width=FLAGS.width,
                                                     channels=FLAGS.channels,
                                                     decoder_length=FLAGS.decoder_length,
                                                     tgt_vocab_size=FLAGS.tgt_vocab_size,
                                                     num_units=FLAGS.num_units,
                                                     beam_width=FLAGS.beam_width,
                                                     encoder_length=FLAGS.encoder_length,
                                                     max_gradient_norm=FLAGS.max_gradient_norm,
                                                     embedding_size=FLAGS.embedding_size)
        infer_saver = tf.train.Saver()
    infer_sess = tf.Session(graph=infer_graph)
    

    with open(FLAGS.test_txt) as f:
        test = [line.rstrip() for line in f]
    test_len = len(test)
    
    test = np.array(test)
    data_test = Dataset_test(test)
    
    
    if FLAGS.lex_txt != None:
        with open(FLAGS.lex_txt) as f:
            lex = [line.rstrip().lower() for line in f]
                
    ti = int(test_len / FLAGS.batch_size)
    rest = test_len % FLAGS.batch_size
    gt = []
    predict = []
    model_file=tf.train.latest_checkpoint(FLAGS.load_dir)
    infer_saver.restore(infer_sess, model_file)
    for t in range(ti):
        batch_test = data_test.next_batch(FLAGS.batch_size)
        path = []
        texts = []   
        for line in batch_test:
            path.append(line.split(' ',1)[0])
            
            texts.append(line.split(' ',1)[1])
        images = load_img(path,FLAGS.height,FLAGS.width)
        
        feed_dict_t = {inputs_t:images[:, :, :, np.newaxis],
                       decoder_lengths_t:np.ones((FLAGS.batch_size), \
                       dtype=int) * FLAGS.decoder_length
                       }
        q= infer_sess.run( pred_ids,feed_dict=feed_dict_t)
    
        for j in range(len(texts)):
            gt.append(texts[j])

            ans = q[j].T[0]
            pd = []
            for c in ans:
                if c != -1:
                    character = tools.idx_to_word[c]
                    if character != '<EOS>':
                        pd.append(character)
            predict.append(''.join(pd))
    
                    
    batch_test = data_test.next_batch(FLAGS.batch_size)
    path = []
    texts = []   
    for line in batch_test:
        path.append(line.split(' ',1)[0])
        texts.append(line.split(' ',1)[1])
    images = load_img(path,FLAGS.height,FLAGS.width)
            
    feed_dict_t = {inputs_t:images[:, :, :, np.newaxis],
                   decoder_lengths_t:np.ones((FLAGS.batch_size), \
                   dtype=int) * FLAGS.decoder_length
                   }
    q = infer_sess.run( pred_ids,feed_dict=feed_dict_t)
                       
    for k in range(rest):
        gt.append(texts[k])
    
        ans = q[k].T[0]
        pd = []
        for c in ans:
            if c != -1:
                character = tools.idx_to_word[c]
                if character != '<EOS>':
                    pd.append(character)
        predict.append(''.join(pd))
    
    
            
    correct = float(0)  
    cnt = 0
    acc_s = 0
    for l in range(len(gt)):
        cnt =cnt + 1
        if gt[l] == predict[l]:
            correct = correct + 1 
                    
    acc_s = correct / cnt
    if FLAGS.lex_txt != None:          
        correct_l = float(0) 
        cnt = 0
        for l in range(len(gt)):
            cnt =cnt + 1
            lexicon = lex[l].split(',')
            dt = distance.levenshtein(predict[l], lexicon[0])
            pl = lexicon[0]
            for ll in lexicon[1:]:
                dt_temp = distance.levenshtein(predict[l], ll)
                if dt_temp < dt:
                    dt = dt_temp
                    pl = ll
            if pl == gt[l]:
                correct_l = correct_l + 1
        acc_l = correct_l / cnt   
        
    print('accuracy: ', acc_s)
    if FLAGS.lex_txt != None:
        print('accuracy with lexicon: ', acc_l)
示例#30
0
def dynamic_nem_iteration(input_data,
                          target_data,
                          h_old,
                          preds_old,
                          gamma_old,
                          k,
                          collisions=None,
                          actions=None):
    # Get dimensions
    input_shape = tf.shape(input_data)
    assert input_shape.get_shape(
    )[0].value == 5, "Requires 5D input (B, K, W, H, C) but {}".format(
        input_shape.get_shape()[0].value)
    W, H, C = (x.value for x in input_data.get_shape()[-3:])

    # set pixel distribution
    pixel_dist = 'bernoulli'

    # set up inner cells and nem cells
    inner_cell = build_network(K=k)
    nem_cell = NEMCell(inner_cell,
                       input_shape=(W, H, C),
                       distribution=pixel_dist)

    # compute prior
    prior = compute_prior(distribution=pixel_dist)

    # build dynamic iteration
    with tf.variable_scope('R-RNNEM') as varscope:
        with tf.name_scope('step_{}'.format(0)):
            # compute inputs
            inputs = (input_data, target_data)

            # feed action through hidden state
            if actions is not None:
                h_old = {'state': h_old, 'action': actions}

            hidden_state = (h_old, preds_old, gamma_old)

            # run hidden cell
            hidden_state, output = nem_cell(inputs, hidden_state)

            theta, pred, gamma = output

            # set collision
            collision = tf.zeros(
                (1, 1, 1, 1, 1)) if collisions is None else collisions

            # compute nem losses
            total_loss, intra_loss, inter_loss, r_total_loss, r_intra_loss, r_inter_loss = compute_outer_loss(
                pred,
                gamma,
                target_data,
                prior,
                pixel_distribution=pixel_dist,
                collision=collision)

            # compute estimated loss upper bound (which doesn't use E-step)
            total_ub_loss, intra_ub_loss, inter_ub_loss, r_total_ub_loss, r_intra_ub_loss, r_inter_ub_loss = \
                compute_outer_ub_loss(pred, target_data, prior, pixel_distribution=pixel_dist, collision=collision)

        other_losses = tf.stack([total_loss, intra_loss, inter_loss])
        other_ub_losses = tf.stack(
            [total_ub_loss, intra_ub_loss, inter_ub_loss])

        r_other_losses = tf.stack([r_total_loss, r_intra_loss, r_inter_loss])
        r_other_ub_losses = tf.stack(
            [r_total_ub_loss, r_intra_ub_loss, r_inter_ub_loss])

    return total_loss, total_ub_loss, r_total_loss, r_total_ub_loss, theta, pred, gamma, other_losses, \
           other_ub_losses, r_other_losses, r_other_ub_losses
示例#31
0
def static_nem_iterations(input_data,
                          target_data,
                          k,
                          collisions=None,
                          actions=None):

    # Get dimensions
    input_shape = tf.shape(input_data)
    assert input_shape.get_shape(
    )[0].value == 6, "Requires 6D input (T, B, K, W, H, C) but {}".format(
        input_shape.get_shape()[0].value)
    W, H, C = (x.value for x in input_data.get_shape()[-3:])

    # set pixel distribution
    pixel_dist = 'bernoulli'

    # set up inner cells and nem cells
    inner_cell = build_network(K=k)
    nem_cell = NEMCell(inner_cell,
                       input_shape=(W, H, C),
                       distribution=pixel_dist)

    # compute prior
    prior = compute_prior(distribution=pixel_dist)

    # get state initializer
    with tf.name_scope('initial_state'):
        hidden_state = nem_cell.init_state(input_shape[1], k, dtype=tf.float32)

    # build static iterations
    outputs = [hidden_state]
    total_losses, total_ub_losses, r_total_losses, r_total_ub_losses, other_losses, other_ub_losses, r_other_losses, r_other_ub_losses = [], [], [], [], [], [], [], []
    loss_step_weights = get_loss_step_weights()

    with tf.variable_scope('R-RNNEM') as varscope:
        for t, loss_weight in enumerate(loss_step_weights):
            varscope.reuse_variables() if t > 0 else None
            with tf.name_scope('step_{}'.format(t)):
                # compute inputs
                inputs = (input_data[t], target_data[t + 1])

                # feed action through hidden state
                if actions is not None:
                    h_old, preds_old, gamma_old = hidden_state
                    h_old = {'state': h_old, 'action': actions[t]}
                    hidden_state = (h_old, preds_old, gamma_old)

                # run hidden cell
                hidden_state, output = nem_cell(inputs, hidden_state)
                theta, pred, gamma = output

                # set collision
                collision = tf.zeros(
                    (1, 1, 1, 1, 1)) if collisions is None else collisions[t]

                # compute nem losses
                total_loss, intra_loss, inter_loss, r_total_loss, r_intra_loss, r_inter_loss = compute_outer_loss(
                    pred,
                    gamma,
                    target_data[t + 1],
                    prior,
                    pixel_distribution=pixel_dist,
                    collision=collision)

                # compute estimated loss upper bound (which doesn't use E-step)
                total_ub_loss, intra_ub_loss, inter_ub_loss, r_total_ub_loss, r_intra_ub_loss, r_inter_ub_loss = \
                    compute_outer_ub_loss(pred, target_data[t+1], prior, pixel_distribution=pixel_dist, collision=collision)

            total_losses.append(loss_weight * total_loss)
            total_ub_losses.append(loss_weight * total_ub_loss)

            r_total_losses.append(loss_weight * r_total_loss)
            r_total_ub_losses.append(loss_weight * r_total_ub_loss)

            other_losses.append(tf.stack([total_loss, intra_loss, inter_loss]))
            other_ub_losses.append(
                tf.stack([total_ub_loss, intra_ub_loss, inter_ub_loss]))

            r_other_losses.append(
                tf.stack([r_total_loss, r_intra_loss, r_inter_loss]))
            r_other_ub_losses.append(
                tf.stack([r_total_ub_loss, r_intra_ub_loss, r_inter_ub_loss]))

            outputs.append(output)

    # collect outputs
    with tf.name_scope('collect_outputs'):
        thetas, preds, gammas = zip(*outputs)
        thetas = tf.stack(thetas)  # (T, 1, B*K, M)
        preds = tf.stack(preds)  # (T, B, K, W, H, C)
        gammas = tf.stack(gammas)  # (T, B, K, W, H, C)
        other_losses = tf.stack(other_losses)  # (T, 3)
        other_ub_losses = tf.stack(other_ub_losses)  # (T, 3)
        r_other_losses = tf.stack(r_other_losses)
        r_other_ub_losses = tf.stack(r_other_ub_losses)
    with tf.name_scope('total_loss'):
        total_loss = tf.reduce_sum(
            tf.stack(total_losses)) / np.sum(loss_step_weights)
    with tf.name_scope('total_ub_loss'):
        total_ub_loss = tf.reduce_sum(
            tf.stack(total_ub_losses)) / np.sum(loss_step_weights)
    with tf.name_scope('r_total_loss'):
        r_total_loss = tf.reduce_sum(
            tf.stack(r_total_losses)) / np.sum(loss_step_weights)
    with tf.name_scope('r_total_ub_loss'):
        r_total_ub_loss = tf.reduce_sum(
            tf.stack(r_total_ub_losses)) / np.sum(loss_step_weights)

    return total_loss, total_ub_loss, r_total_loss, r_total_ub_loss, thetas, preds, gammas, other_losses, \
           other_ub_losses, r_other_losses, r_other_ub_losses
示例#32
0
def train():
    with open(flags.train_txt) as f:
        sample = [line.rstrip() for line in f]
    sample = np.array(sample)
    iteration = len(sample) // flags.batch_size
    data = Dataset(sample)

    tf.reset_default_graph()
    train_graph = tf.Graph()
    infer_graph = tf.Graph()

    with train_graph.as_default():
        encoder_outputs, inputs = build_cnn(True, flags.batch_size,
                                            flags.height, flags.width,
                                            flags.channels)
        train_op, loss, sample_ids, logits, decoder_inputs, \
        target_labels, learning_rate,keep_prob = build_network(encoder_outputs,
                                                     False,
                                                     flags.batch_size,
                                                     flags.decoder_length,
                                                     flags.tgt_vocab_size,
                                                     flags.attn_num_hidden,
                                                     flags.encoder_length,
                                                     flags.max_gradient_norm
                                                     )
        initializer = tf.global_variables_initializer()
        train_saver = tf.train.Saver()

    train_sess = tf.Session(graph=train_graph)
    train_sess.run(initializer)

    with infer_graph.as_default():
        encoder_outputs_t, inputs_t = build_cnn(False, flags.batch_size,
                                                flags.height, flags.width,
                                                flags.channels)
        _, _, pred_ids, logits_t, decoder_inputs_t, \
        _, _ ,keep_prob_t= build_network(encoder_outputs_t,
                             True,
                             flags.batch_size,
                             flags.decoder_length,
                             flags.tgt_vocab_size,
                             flags.attn_num_hidden,
                             flags.encoder_length,
                             flags.max_gradient_norm
                             )
        infer_saver = tf.train.Saver()
    infer_sess = tf.Session(graph=infer_graph)

    # Training

    start = time.time()
    acc_log = 0
    count = 0
    lr = flags.learning_rate
    for h in range(flags.epoch):
        for i in range(iteration):
            batch_train = data.next_batch(flags.batch_size)
            path = []
            texts = []
            for line in batch_train:
                path.append(line.split(' ')[0])
                texts.append(line.split(' ')[1])

            images = load_img(path, flags.height, flags.width)

            training_target_labels = get_label(texts, flags.decoder_length)
            training_decoder_inputs = np.delete(training_target_labels,
                                                -1,
                                                axis=1)
            training_decoder_inputs = np.c_[
                np.zeros(training_decoder_inputs.shape[0]),
                training_decoder_inputs].T

            feed_dict = {
                inputs: images[:, :, :, np.newaxis],
                decoder_inputs: training_decoder_inputs,
                target_labels: training_target_labels,
                learning_rate: lr,
                keep_prob: 0.5
            }
            _, loss_value = train_sess.run([train_op, loss],
                                           feed_dict=feed_dict)

            step = float(i + 1)
            if step % flags.display_step == 0:

                now = time.time()
                print(step, now - start, loss_value)
                start = now

            if step % flags.eval_step == 0:
                train_saver.save(train_sess, flags.save_dir)
                model_file = tf.train.latest_checkpoint(
                    flags.save_dir.rsplit('/', 1)[0])
                infer_saver.restore(infer_sess, model_file)

                gt = []
                predict = []

                images = load_img(path, flags.height, flags.width)

                testing_decoder_inputs = np.zeros(
                    (flags.decoder_length, flags.batch_size), dtype=float)
                feed_dict_t = {
                    inputs_t: images[:, :, :, np.newaxis],
                    decoder_inputs_t: testing_decoder_inputs,
                    keep_prob_t: 1
                }
                q = infer_sess.run(pred_ids, feed_dict=feed_dict_t)

                for j in range(flags.batch_size):
                    gt.append(texts[j])
                    ans = np.array(q).T[j]
                    pd = []
                    for c in ans:
                        if c != -1:
                            character = tools.idx_to_word[c]
                            if character != '<EOS>':
                                pd.append(character)
                    predict.append(''.join(pd))

                correct = float(0)
                cnt = 0
                acc_s = 0

                for l in range(len(gt)):
                    cnt = cnt + 1
                    if gt[l] == predict[l]:
                        correct = correct + 1
                count = count + 1
                acc_s = correct / cnt
                if acc_s > acc_log:
                    acc_log = acc_s
                    count = 0
                if count == (iteration // flags.eval_step):
                    lr = lr / 5
示例#33
0
def PolarOffsetMain(args, cfg):
    if args.launcher == None:
        dist_train = False
    else:
        args.batch_size, cfg.LOCAL_RANK = getattr(
            common_utils, 'init_dist_%s' % args.launcher)(args.batch_size,
                                                          args.tcp_port,
                                                          args.local_rank,
                                                          backend='nccl')
        dist_train = True
    cfg['DIST_TRAIN'] = dist_train
    output_dir = os.path.join('./output', args.tag)
    ckpt_dir = os.path.join(output_dir, 'ckpt')
    tmp_dir = os.path.join(output_dir, 'tmp')
    summary_dir = os.path.join(output_dir, 'summary')
    if not os.path.exists(output_dir):
        os.makedirs(output_dir, exist_ok=True)
    if not os.path.exists(ckpt_dir):
        os.makedirs(ckpt_dir, exist_ok=True)
    if not os.path.exists(tmp_dir):
        os.makedirs(tmp_dir, exist_ok=True)
    if not os.path.exists(summary_dir):
        os.makedirs(summary_dir, exist_ok=True)

    if args.onlyval and args.saveval:
        results_dir = os.path.join(output_dir, 'test', 'sequences')
        if not os.path.exists(results_dir):
            os.makedirs(results_dir, exist_ok=True)
        for i in range(8, 9):
            sub_dir = os.path.join(results_dir, str(i).zfill(2), 'predictions')
            if not os.path.exists(sub_dir):
                os.makedirs(sub_dir, exist_ok=True)

    if args.onlytest:
        results_dir = os.path.join(output_dir, 'test', 'sequences')
        if not os.path.exists(results_dir):
            os.makedirs(results_dir, exist_ok=True)
        for i in range(11, 22):
            sub_dir = os.path.join(results_dir, str(i).zfill(2), 'predictions')
            if not os.path.exists(sub_dir):
                os.makedirs(sub_dir, exist_ok=True)

    log_file = os.path.join(
        output_dir, ('log_train_%s.txt' %
                     datetime.datetime.now().strftime('%Y%m%d-%H%M%S')))
    logger = common_utils.create_logger(log_file, rank=cfg.LOCAL_RANK)

    logger.info('**********************Start logging**********************')
    gpu_list = os.environ[
        'CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ.keys(
        ) else 'ALL'
    logger.info('CUDA_VISIBLE_DEVICES=%s' % gpu_list)

    if dist_train:
        total_gpus = dist.get_world_size()
        logger.info('total_batch_size: %d' % (total_gpus * args.batch_size))
    for key, val in vars(args).items():
        logger.info('{:16} {}'.format(key, val))
    log_config_to_file(cfg, logger=logger)
    if cfg.LOCAL_RANK == 0:
        os.system('cp %s %s' % (args.config, output_dir))

    ### create dataloader
    if (not args.onlytest) and (not args.onlyval):
        train_dataset_loader = build_dataloader(args,
                                                cfg,
                                                split='train',
                                                logger=logger)
        val_dataset_loader = build_dataloader(args,
                                              cfg,
                                              split='val',
                                              logger=logger,
                                              no_shuffle=True,
                                              no_aug=True)
    elif args.onlyval:
        val_dataset_loader = build_dataloader(args,
                                              cfg,
                                              split='val',
                                              logger=logger,
                                              no_shuffle=True,
                                              no_aug=True)
    else:
        test_dataset_loader = build_dataloader(args,
                                               cfg,
                                               split='test',
                                               logger=logger,
                                               no_shuffle=True,
                                               no_aug=True)

    ### create model
    model = build_network(cfg)
    model.cuda()

    ### create optimizer
    optimizer = train_utils.build_optimizer(model, cfg)

    ### load ckpt
    ckpt_fname = os.path.join(ckpt_dir, args.ckpt_name)
    epoch = -1

    other_state = {}
    if args.pretrained_ckpt is not None and os.path.exists(ckpt_fname):
        logger.info(
            "Now in pretrain mode and loading ckpt: {}".format(ckpt_fname))
        if not args.nofix:
            if args.fix_semantic_instance:
                logger.info(
                    "Freezing backbone, semantic and instance part of the model."
                )
                model.fix_semantic_instance_parameters()
            else:
                logger.info(
                    "Freezing semantic and backbone part of the model.")
                model.fix_semantic_parameters()
        optimizer = train_utils.build_optimizer(model, cfg)
        epoch, other_state = train_utils.load_params_with_optimizer_otherstate(
            model,
            ckpt_fname,
            to_cpu=dist_train,
            optimizer=optimizer,
            logger=logger)  # new feature
        logger.info("Loaded Epoch: {}".format(epoch))
    elif args.pretrained_ckpt is not None:
        train_utils.load_pretrained_model(model,
                                          args.pretrained_ckpt,
                                          to_cpu=dist_train,
                                          logger=logger)
        if not args.nofix:
            if args.fix_semantic_instance:
                logger.info(
                    "Freezing backbone, semantic and instance part of the model."
                )
                model.fix_semantic_instance_parameters()
            else:
                logger.info(
                    "Freezing semantic and backbone part of the model.")
                model.fix_semantic_parameters()
        else:
            logger.info("No Freeze.")
        optimizer = train_utils.build_optimizer(model, cfg)
    elif os.path.exists(ckpt_fname):
        epoch, other_state = train_utils.load_params_with_optimizer_otherstate(
            model,
            ckpt_fname,
            to_cpu=dist_train,
            optimizer=optimizer,
            logger=logger)  # new feature
        logger.info("Loaded Epoch: {}".format(epoch))
    if other_state is None:
        other_state = {}

    ### create optimizer and scheduler
    lr_scheduler = None
    if lr_scheduler == None:
        logger.info('Not using lr scheduler')

    model.train(
    )  # before wrap to DistributedDataParallel to support fixed some parameters
    if dist_train:
        model = nn.parallel.DistributedDataParallel(
            model,
            device_ids=[cfg.LOCAL_RANK % torch.cuda.device_count()],
            find_unused_parameters=True)
    logger.info(model)

    if cfg.LOCAL_RANK == 0:
        writer = SummaryWriter(log_dir=summary_dir)

    logger.info('**********************Start Training**********************')
    rank = cfg.LOCAL_RANK
    best_before_iou = -1 if 'best_before_iou' not in other_state else other_state[
        'best_before_iou']
    best_pq = -1 if 'best_pq' not in other_state else other_state['best_pq']
    best_after_iou = -1 if 'best_after_iou' not in other_state else other_state[
        'best_after_iou']
    global_iter = 0 if 'global_iter' not in other_state else other_state[
        'global_iter']
    val_global_iter = 0 if 'val_global_iter' not in other_state else other_state[
        'val_global_iter']
    best_tracking_loss = 10086 if 'best_tracking_loss' not in other_state else other_state[
        'best_tracking_loss']

    ### test
    if args.onlytest:
        logger.info('----EPOCH {} Testing----'.format(epoch))
        model.eval()
        if rank == 0:
            vbar = tqdm(total=len(test_dataset_loader), dynamic_ncols=True)
        for i_iter, inputs in enumerate(test_dataset_loader):
            with torch.no_grad():
                if cfg.MODEL.NAME.startswith(
                        'PolarOffsetSpconvPytorchMeanshiftTracking'
                ) or cfg.MODEL.NAME.startswith('PolarOffsetSpconvTracking'):
                    ret_dict = model(inputs,
                                     is_test=True,
                                     merge_evaluator_list=None,
                                     merge_evaluator_window_k_list=None,
                                     require_cluster=True)
                else:
                    ret_dict = model(inputs,
                                     is_test=True,
                                     require_cluster=True,
                                     require_merge=True)
                common_utils.save_test_results(ret_dict, results_dir, inputs)
            if rank == 0:
                vbar.set_postfix({
                    'fname':
                    '/'.join(inputs['pcd_fname'][0].split('/')[-3:])
                })
                vbar.update(1)
        if rank == 0:
            vbar.close()
        logger.info("----Testing Finished----")
        return

    ### evaluate
    if args.onlyval:
        logger.info('----EPOCH {} Evaluating----'.format(epoch))
        model.eval()
        min_points = 50  # according to SemanticKITTI official rule
        if cfg.MODEL.NAME.startswith(
                'PolarOffsetSpconvPytorchMeanshiftTracking'
        ) or cfg.MODEL.NAME.startswith('PolarOffsetSpconvTracking'):
            merge_evaluator_list = []
            merge_evaluator_window_k_list = []
            for k in [1, 5, 10, 15]:
                merge_evaluator_list.append(init_eval(min_points))
                merge_evaluator_window_k_list.append(k)
        else:
            before_merge_evaluator = init_eval(min_points=min_points)
            after_merge_evaluator = init_eval(min_points=min_points)
        if rank == 0:
            vbar = tqdm(total=len(val_dataset_loader), dynamic_ncols=True)
        for i_iter, inputs in enumerate(val_dataset_loader):
            inputs['i_iter'] = i_iter
            # torch.cuda.empty_cache()
            with torch.no_grad():
                if cfg.MODEL.NAME.startswith(
                        'PolarOffsetSpconvPytorchMeanshiftTracking'
                ) or cfg.MODEL.NAME.startswith('PolarOffsetSpconvTracking'):
                    ret_dict = model(inputs,
                                     is_test=True,
                                     merge_evaluator_list=merge_evaluator_list,
                                     merge_evaluator_window_k_list=
                                     merge_evaluator_window_k_list,
                                     require_cluster=True)
                else:
                    ret_dict = model(
                        inputs,
                        is_test=True,
                        before_merge_evaluator=before_merge_evaluator,
                        after_merge_evaluator=after_merge_evaluator,
                        require_cluster=True)
                #########################
                # with open('./ipnb/{}_matching_list.pkl'.format(i_iter), 'wb') as fd:
                #     pickle.dump(ret_dict['matching_list'], fd)
                #########################
                if args.saveval:
                    common_utils.save_test_results(ret_dict, results_dir,
                                                   inputs)
            if rank == 0:
                vbar.set_postfix({
                    'loss':
                    ret_dict['loss'].item(),
                    'fname':
                    '/'.join(inputs['pcd_fname'][0].split('/')[-3:]),
                    'ins_num':
                    -1 if 'ins_num' not in ret_dict else ret_dict['ins_num']
                })
                vbar.update(1)
        if dist_train:
            if cfg.MODEL.NAME.startswith(
                    'PolarOffsetSpconvPytorchMeanshiftTracking'
            ) or cfg.MODEL.NAME.startswith('PolarOffsetSpconvTracking'):
                pass
            else:
                before_merge_evaluator = common_utils.merge_evaluator(
                    before_merge_evaluator, tmp_dir)
                dist.barrier()
                after_merge_evaluator = common_utils.merge_evaluator(
                    after_merge_evaluator, tmp_dir)

        if rank == 0:
            vbar.close()
        if rank == 0:
            ## print results
            if cfg.MODEL.NAME.startswith(
                    'PolarOffsetSpconvPytorchMeanshiftTracking'
            ) or cfg.MODEL.NAME.startswith('PolarOffsetSpconvTracking'):
                for evaluate, window_k in zip(merge_evaluator_list,
                                              merge_evaluator_window_k_list):
                    logger.info("Current Window K: {}".format(window_k))
                    printResults(evaluate, logger=logger)
            else:
                logger.info("Before Merge Semantic Scores")
                before_merge_results = printResults(before_merge_evaluator,
                                                    logger=logger,
                                                    sem_only=True)
                logger.info("After Merge Panoptic Scores")
                after_merge_results = printResults(after_merge_evaluator,
                                                   logger=logger)

        logger.info("----Evaluating Finished----")
        return

    ### train
    while True:
        epoch += 1
        if 'MAX_EPOCH' in cfg.OPTIMIZE.keys():
            if epoch > cfg.OPTIMIZE.MAX_EPOCH:
                break

        ### train one epoch
        logger.info('----EPOCH {} Training----'.format(epoch))
        loss_acc = 0
        if rank == 0:
            pbar = tqdm(total=len(train_dataset_loader), dynamic_ncols=True)
        for i_iter, inputs in enumerate(train_dataset_loader):
            # torch.cuda.empty_cache()
            torch.autograd.set_detect_anomaly(True)
            model.train()
            optimizer.zero_grad()
            inputs['i_iter'] = i_iter
            inputs['rank'] = rank
            ret_dict = model(inputs)

            if args.pretrained_ckpt is not None and not args.fix_semantic_instance:  # training offset
                if args.nofix:
                    loss = ret_dict['loss']
                elif len(ret_dict['offset_loss_list']) > 0:
                    loss = sum(ret_dict['offset_loss_list'])
                else:
                    loss = torch.tensor(0.0, requires_grad=True)  #mock pbar
                    ret_dict['offset_loss_list'] = [loss]  #mock writer
            elif args.pretrained_ckpt is not None and args.fix_semantic_instance and cfg.MODEL.NAME == 'PolarOffsetSpconvPytorchMeanshift':  # training dynamic shifting
                loss = sum(ret_dict['meanshift_loss'])
            elif cfg.MODEL.NAME.startswith(
                    'PolarOffsetSpconvPytorchMeanshiftTracking'
            ) or cfg.MODEL.NAME.startswith('PolarOffsetSpconvTracking'):
                loss = sum(ret_dict['tracking_loss'])
                #########################
                # with open('./ipnb/{}_matching_list.pkl'.format(i_iter), 'wb') as fd:
                #     pickle.dump(ret_dict['matching_list'], fd)
                #########################
            else:
                loss = ret_dict['loss']
            loss.backward()
            optimizer.step()

            if rank == 0:
                try:
                    cur_lr = float(optimizer.lr)
                except:
                    cur_lr = optimizer.param_groups[0]['lr']
                loss_acc += loss.item()
                pbar.set_postfix({
                    'loss': loss.item(),
                    'lr': cur_lr,
                    'mean_loss': loss_acc / float(i_iter + 1)
                })
                pbar.update(1)
                writer.add_scalar('Train/01_Loss', ret_dict['loss'].item(),
                                  global_iter)
                writer.add_scalar('Train/02_SemLoss',
                                  ret_dict['sem_loss'].item(), global_iter)
                if 'offset_loss_list' in ret_dict and sum(
                        ret_dict['offset_loss_list']).item() > 0:
                    writer.add_scalar('Train/03_InsLoss',
                                      sum(ret_dict['offset_loss_list']).item(),
                                      global_iter)
                writer.add_scalar('Train/04_LR', cur_lr, global_iter)
                writer_acc = 5
                if 'meanshift_loss' in ret_dict:
                    writer.add_scalar('Train/05_DSLoss',
                                      sum(ret_dict['meanshift_loss']).item(),
                                      global_iter)
                    writer_acc += 1
                if 'tracking_loss' in ret_dict:
                    writer.add_scalar('Train/06_TRLoss',
                                      sum(ret_dict['tracking_loss']).item(),
                                      global_iter)
                    writer_acc += 1
                more_keys = []
                for k, _ in ret_dict.items():
                    if k.find('summary') != -1:
                        more_keys.append(k)
                for ki, k in enumerate(more_keys):
                    if k == 'bandwidth_weight_summary':
                        continue
                    ki += writer_acc
                    writer.add_scalar(
                        'Train/{}_{}'.format(str(ki).zfill(2), k), ret_dict[k],
                        global_iter)
                global_iter += 1
        if rank == 0:
            pbar.close()

        ### evaluate after each epoch
        logger.info('----EPOCH {} Evaluating----'.format(epoch))
        model.eval()
        min_points = 50
        before_merge_evaluator = init_eval(min_points=min_points)
        after_merge_evaluator = init_eval(min_points=min_points)
        tracking_loss = 0
        if rank == 0:
            vbar = tqdm(total=len(val_dataset_loader), dynamic_ncols=True)
        for i_iter, inputs in enumerate(val_dataset_loader):
            # torch.cuda.empty_cache()
            inputs['i_iter'] = i_iter
            inputs['rank'] = rank
            with torch.no_grad():
                if cfg.MODEL.NAME.startswith(
                        'PolarOffsetSpconvPytorchMeanshiftTracking'
                ) or cfg.MODEL.NAME.startswith('PolarOffsetSpconvTracking'):
                    ret_dict = model(inputs,
                                     is_test=True,
                                     merge_evaluator_list=None,
                                     merge_evaluator_window_k_list=None,
                                     require_cluster=True)
                else:
                    ret_dict = model(
                        inputs,
                        is_test=True,
                        before_merge_evaluator=before_merge_evaluator,
                        after_merge_evaluator=after_merge_evaluator,
                        require_cluster=True)
            if rank == 0:
                vbar.set_postfix({'loss': ret_dict['loss'].item()})
                vbar.update(1)
                writer.add_scalar('Val/01_Loss', ret_dict['loss'].item(),
                                  val_global_iter)
                writer.add_scalar('Val/02_SemLoss',
                                  ret_dict['sem_loss'].item(), val_global_iter)
                if 'offset_loss_list' in ret_dict and sum(
                        ret_dict['offset_loss_list']).item() > 0:
                    writer.add_scalar('Val/03_InsLoss',
                                      sum(ret_dict['offset_loss_list']).item(),
                                      val_global_iter)
                if 'tracking_loss' in ret_dict:
                    writer.add_scalar('Val/06_TRLoss',
                                      sum(ret_dict['tracking_loss']).item(),
                                      global_iter)
                    tracking_loss += sum(ret_dict['tracking_loss']).item()
                more_keys = []
                for k, _ in ret_dict.items():
                    if k.find('summary') != -1:
                        more_keys.append(k)
                for ki, k in enumerate(more_keys):
                    if k == 'bandwidth_weight_summary':
                        continue
                    ki += 4
                    writer.add_scalar('Val/{}_{}'.format(str(ki).zfill(2), k),
                                      ret_dict[k], val_global_iter)
                val_global_iter += 1
        tracking_loss /= len(val_dataset_loader)
        if dist_train:
            try:
                before_merge_evaluator = common_utils.merge_evaluator(
                    before_merge_evaluator, tmp_dir, prefix='before_')
                dist.barrier()
                after_merge_evaluator = common_utils.merge_evaluator(
                    after_merge_evaluator, tmp_dir, prefix='after_')
            except:
                print("Someting went wrong when merging evaluator in rank {}".
                      format(rank))
        if rank == 0:
            vbar.close()
        if rank == 0:
            ## print results
            logger.info("Before Merge Semantic Scores")
            before_merge_results = printResults(before_merge_evaluator,
                                                logger=logger,
                                                sem_only=True)
            logger.info("After Merge Panoptic Scores")
            after_merge_results = printResults(after_merge_evaluator,
                                               logger=logger)
            ## save ckpt
            other_state = {
                'best_before_iou': best_before_iou,
                'best_pq': best_pq,
                'best_after_iou': best_after_iou,
                'global_iter': global_iter,
                'val_global_iter': val_global_iter,
                'best_tracking_loss': best_tracking_loss,
            }
            saved_flag = False
            if best_tracking_loss > tracking_loss and cfg.MODEL.NAME.startswith(
                    'PolarOffsetSpconvPytorchMeanshiftTracking'
            ) or cfg.MODEL.NAME.startswith('PolarOffsetSpconvTracking'):
                best_tracking_loss = tracking_loss
                if not saved_flag:
                    states = train_utils.checkpoint_state(
                        model, optimizer, epoch, other_state)
                    train_utils.save_checkpoint(
                        states,
                        os.path.join(
                            ckpt_dir, 'checkpoint_epoch_{}_{}.pth'.format(
                                epoch,
                                str(tracking_loss)[:5])))
                    saved_flag = True
            if best_before_iou < before_merge_results['iou_mean']:
                best_before_iou = before_merge_results['iou_mean']
                if not saved_flag:
                    states = train_utils.checkpoint_state(
                        model, optimizer, epoch, other_state)
                    train_utils.save_checkpoint(
                        states,
                        os.path.join(
                            ckpt_dir,
                            'checkpoint_epoch_{}_{}_{}_{}.pth'.format(
                                epoch,
                                str(best_before_iou)[:5],
                                str(best_pq)[:5],
                                str(best_after_iou)[:5])))
                    saved_flag = True
            if best_pq < after_merge_results['pq_mean']:
                best_pq = after_merge_results['pq_mean']
                if not saved_flag:
                    states = train_utils.checkpoint_state(
                        model, optimizer, epoch, other_state)
                    train_utils.save_checkpoint(
                        states,
                        os.path.join(
                            ckpt_dir,
                            'checkpoint_epoch_{}_{}_{}_{}.pth'.format(
                                epoch,
                                str(best_before_iou)[:5],
                                str(best_pq)[:5],
                                str(best_after_iou)[:5])))
                    saved_flag = True
            if best_after_iou < after_merge_results['iou_mean']:
                best_after_iou = after_merge_results['iou_mean']
                if not saved_flag:
                    states = train_utils.checkpoint_state(
                        model, optimizer, epoch, other_state)
                    train_utils.save_checkpoint(
                        states,
                        os.path.join(
                            ckpt_dir,
                            'checkpoint_epoch_{}_{}_{}_{}.pth'.format(
                                epoch,
                                str(best_before_iou)[:5],
                                str(best_pq)[:5],
                                str(best_after_iou)[:5])))
                    saved_flag = True
            logger.info("Current best before IoU: {}".format(best_before_iou))
            logger.info("Current best after IoU: {}".format(best_after_iou))
            logger.info("Current best after PQ: {}".format(best_pq))
            logger.info(
                "Current best tracking loss: {}".format(best_tracking_loss))
        if lr_scheduler != None:
            lr_scheduler.step(epoch)  # new feature