示例#1
0
def network_01(config):

    batch_size = config['batch_size']
    sess = tf.Session()
    input_size = mnist.train.images.shape[1]

    x = tf.placeholder(tf.float32, [None, input_size])
    y = tf.placeholder(tf.float32,[None,10])

    autoencoder = create(x,y,config['autoencoder'])
    init = tf.initialize_all_variables()
    sess.run(init)
    dual_train_step  = tf.train.GradientDescentOptimizer(0.5).minimize(autoencoder['cost_total'])
    class_train_step = tf.train.GradientDescentOptimizer(0.5).minimize(autoencoder['cost_class'])
    auto_train_step  = tf.train.GradientDescentOptimizer(0.5).minimize(autoencoder['cost_autoencoder'])

    c1_axis = np.zeros(0)
    c2_axis = np.zeros(0)
    c3_axis = np.zeros(0)
    x_axis = np.zeros(0)

    if config['pre_training_batches'] > 0:
        """
        PRETRAIN
        """
        print 'pre-train autoencoder:'
        for i in tqdm(range(pre_training_batches)):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            sess.run(auto_train_step, feed_dict={x: batch_xs, y: batch_ys})


    # do 1000 training stepscomp
    # print 'i\ttot\tclass\tauto'
    N = config['iterations']
    print N
    for i in range(N):
        # Train classifier
        batch_xs, batch_ys = mnist.train.next_batch(config['batch_size'])

        if config['combined_cost_function']:
            sess.run(dual_train_step, feed_dict={x: batch_xs, y: batch_ys})
        else:
            sess.run(class_train_step, feed_dict={x: batch_xs, y: batch_ys})


        if config['alternating']:
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            sess.run(auto_train_step, feed_dict={x: batch_xs, y: batch_ys})

        if i % 100 == 0:
            batch_xs, batch_ys = mnist.validation.next_batch(batch_size)
            c1 = sess.run(autoencoder['cost_total'], feed_dict={x: batch_xs, y: batch_ys})
            c2 = sess.run(autoencoder['cost_class'], feed_dict={x: batch_xs, y: batch_ys})
            c3 = sess.run(autoencoder['cost_autoencoder'], feed_dict={x: batch_xs, y: batch_ys})
            print i,c1,c2,c3
            # x_axis = np.append(x_axis,i)
            # c1_axis = np.append(c1_axis,c1)
            # c2_axis = np.append(c2_axis,c2)
            # c3_axis = np.append(c3_axis,c3)
    sess.close()
示例#2
0
train_couples_len = sum(
    1 for e in utils.balance(couples_generator(images_train)))
test_couples_len = sum(1
                       for e in utils.balance(couples_generator(images_test)))

print('Training with %d couples.' % train_couples_len)
print('Testing with %d couples.' % test_couples_len)
print(input_shape)

data_gen = utils.get_ImageDataGenerator(all_images, input_shape)
train_iterator = utils.CouplesIterator(inf_couples_generator(images_train),
                                       input_shape, data_gen, BATCH_SIZE)
test_iterator = utils.CouplesIterator(inf_couples_generator(images_test),
                                      input_shape, data_gen, BATCH_SIZE)

model = network.create(input_shape)
network.compile(model)

model.save('pretrain.h5')

model.fit_generator(train_iterator,
                    steps_per_epoch=train_couples_len / BATCH_SIZE,
                    epochs=EPOCHS)

model.save('pretrain.h5')

score = model.evaluate_generator(test_iterator,
                                 steps=test_couples_len / BATCH_SIZE)
print(score)

asd = utils.CouplesIterator(inf_couples_generator(images_test[:100]),
示例#3
0
def cluster_creator(request, attributes, username):
  #Attributes passed in the form:
  # {
  #   public_key: String,
  #   workers: String,
  #   password: String,
  #   flavor: String,
  #   status: Boolean
  #   volSize: Integer - Not Required,
  #   volume_name: String - Not Required
  # }


  #Store OpenRC Credentials for OpenStack connection
  credentials = get_credentials(attributes['tenant'])
  conn = openstack.connect(**credentials)
  #Store environment variables for use in new environment
  osdataproc_creds = env_credentials(attributes['tenant'])

  #Security Measure to ensure flavour exists in the requested tenant
  flavors=conn.list_flavors()
  flavor_names = [str(flavor.name) for flavor in flavors if flavor.id is not None]

  lustre_network = database.lustre_status(attributes['tenant'])

  with open('tenants_conf.yml', 'r') as file:
    data = yaml.load(file, Loader=yaml.Loader)
    lustre_image = data['lustre_image'].get('image')

  if attributes["flavor"] not in flavor_names:
    #If the flavor provided by the user is not a valid flavor
    #it'll be switched for m2.medium
    print("Invalid Flavor - Switching to default")
    attributes["flavor"] = "m2.medium"


  if attributes["status"] == False:
    if path.exists('/backend/clusters/'+username):
      #Implement better logging system for errors
      #This error indicates the cluster still exists despite the codebase believing it to be down
      print("A cluster is already registered - an error has occured!")
    else:
      #This runs if the tenant does not have secure lustre support
      #Creates the user's network
      network.create(conn, username, attributes['tenant'])

      #Run the cluster creation bash script
      if "volume_name" in attributes:
        #Volume Size is set to zero if volume exists for the user in the tenant
        volume_size = '0'
        print("Username: "******" is creating a cluster in " + attributes['tenant'] +", using volume: " + attributes['volume_name'])
        process = subprocess.run(['bash', 'cluster-creation.sh', username, attributes["password"],
                                 attributes["workers"], attributes["flavor"], attributes["volume_name"],
                                 volume_size, lustre_network, lustre_image], env = osdataproc_creds, capture_output=True, text=True)
      else:
        #If the user does not have a volume in the tenant, one is created for them
        #in the schema of USERNAME-cluster-volume
        volume_name = username+'-cluster-volume'
        database.add_volume(username, attributes['tenant'], volume_name)
        print("Creating Volume called: " + volume_name + " of size: " + attributes["volSize"])
        print("Username: "******" is creating a cluster in " + attributes['tenant'] +", using volume: " + volume_name)
        process = subprocess.run(['bash', 'cluster-creation.sh', username, attributes["password"],
                                 attributes["workers"], attributes["flavor"], volume_name, attributes["volSize"], lustre_network, lustre_image],
                                 env = osdataproc_creds, capture_output=True, text=True)
      if DEBUG:
        print(process)

      try:
        path_to_cluster_ip = '/backend/clusters/' + username + '/osdataproc/terraform/terraform.tfstate.d/' + username + '/outputs.json'

        if path.exists(path_to_cluster_ip):
          with open(path_to_cluster_ip) as json_file:
            data = json.load(json_file)
            cluster_ip = data["spark_master_public_ip"]["value"]
          database.add_cluster(username, attributes['tenant'], cluster_ip, attributes['workers'])
          user_key_path = "/backend/clusters/"+username+"/pubkey.pub"
          cluster_location = "ubuntu@"+cluster_ip

          with open(user_key_path, 'w') as key_file:
            key_file.write(attributes["public_key"])


          subprocess.run(['ssh-copy-id', '-f', '-i', user_key_path, cluster_location], capture_output=True, text=True)
      except:
        print("Error has occured when registering this cluster")
示例#4
0
            "Values": [instance_name]
        }])
        terminated = False
        for reservation in res['Reservations']:
            for instance in reservation['Instances']:
                instance_state = instance['State']['Name']
                print("------{}".format(instance_state))
                if instance_state != 'terminated':
                    terminated = True
        if terminated == False:
            break
        time.sleep(6)


if __name__ == "__main__":
    res = network.create()
    create_pem()
    create_instance(res["subnet_id"], res["group_id"])
    delete_instance()
    wait_instance_is_terminated()
    delete_pem()
    network.delete()
'''
{
    "vpc_id":vpc_id,
    "gateway_id":gateway_id,
    "subnet_id":subnet_id,
    "group_id":group_id,
    "route_table_id":route_table_id
}
'''
示例#5
0
def main(argv=None): # IGNORE:C0111
    '''Command line options.'''

    from . import device

    if argv is None:
        argv = sys.argv
    else:
        sys.argv.extend(argv)

    program_name = os.path.basename(sys.argv[0])
    program_version = "v%s" % __version__
    program_build_date = str(__updated__)
    program_version_message = '%%(prog)s %s (%s)' % (program_version, program_build_date)
    program_shortdesc = __shortdesc__
    program_license = '''%s

  Created by dbsystem group on %s.
  Copyright 2016 NUS School of Computing. All rights reserved.

  Licensed under the Apache License 2.0
  http://www.apache.org/licenses/LICENSE-2.0

  Distributed on an "AS IS" basis without warranties
  or conditions of any kind, either express or implied.

USAGE
''' % (program_shortdesc, str(__date__))

    global debug

    try:
        # Setup argument parser
        parser = ArgumentParser(description=program_license, formatter_class=RawDescriptionHelpFormatter)
        parser.add_argument("-p", "--port", dest="port", default=5000, help="the port to listen to, default is 5000")
        parser.add_argument("-param", "--parameter", dest="parameter",  help="the parameter file path to be loaded")
        parser.add_argument("-D", "--debug", dest="debug", action="store_true", help="whether need to debug")
        parser.add_argument("-R", "--reload", dest="reload_data", action="store_true", help="whether need to reload data")
        parser.add_argument("-C", "--cpu", dest="use_cpu", action="store_true", help="Using cpu or not, default is using gpu")
        parser.add_argument("-m", "--mode", dest="mode", choices=['train','test','serve'], default='serve', help="On Which mode (train,test,serve) to run singa")
        parser.add_argument('-V', '--version', action='version', version=program_version_message)

        # Process arguments
        args = parser.parse_args()

        port = args.port
        parameter_file = args.parameter
        mode = args.mode
        need_reload = args.reload_data
        use_cpu = args.use_cpu
        debug = args.debug

        #prepare data files
        config.read('file.cfg')
        file_prepare(need_reload)


        import network as net
        model = net.create()

        #load parameter
        parameter_file=get_parameter(parameter_file)

        if parameter_file:
            print "load parameter file: %s" % parameter_file
            model.load(parameter_file)

        if use_cpu:
            raise CLIError("Currently cpu is not support!")
        else:
            print "runing with gpu"
            d = device.create_cuda_gpu()

        model.to_device(d)

        if mode == "serve":
            print "runing singa in serve mode, listen to  port: %s " % port
            global service
            from serve import Service
            service =Service(model,d)

            app.debug = debug
            app.run(host='0.0.0.0', port= port)
        elif mode == "train":
            print "runing singa in train mode"
            global trainer
            from train import Trainer
            trainer= Trainer(model,d)
            if not parameter_file:
                trainer.initialize()
            trainer.train()
        else:
            raise CLIError("Currently only serve mode is surpported!")
        return 0
    except KeyboardInterrupt:
        ### handle keyboard interrupt ###
        return 0
    except Exception, e:
        if debug:
            traceback.print_exc()
            raise(e)
        indent = len(program_name) * " "
        sys.stderr.write(program_name + ": " + str(e) + "\n")
        sys.stderr.write(indent + "  for help use --help \n\n")
        return 2
示例#6
0
def main(argv=None):  # IGNORE:C0111
    '''Command line options.'''

    from . import device

    if argv is None:
        argv = sys.argv
    else:
        sys.argv.extend(argv)

    program_name = os.path.basename(sys.argv[0])
    program_version = "v%s" % __version__
    program_build_date = str(__updated__)
    program_version_message = '%%(prog)s %s (%s)' % (program_version,
                                                     program_build_date)
    program_shortdesc = __shortdesc__
    program_license = '''%s

  Created by dbsystem group on %s.
  Copyright 2016 NUS School of Computing. All rights reserved.

  Licensed under the Apache License 2.0
  http://www.apache.org/licenses/LICENSE-2.0

  Distributed on an "AS IS" basis without warranties
  or conditions of any kind, either express or implied.

USAGE
''' % (program_shortdesc, str(__date__))

    global debug

    try:
        # Setup argument parser
        parser = ArgumentParser(description=program_license,
                                formatter_class=RawDescriptionHelpFormatter)
        parser.add_argument("-p",
                            "--port",
                            dest="port",
                            default=5000,
                            help="the port to listen to, default is 5000")
        parser.add_argument("-param",
                            "--parameter",
                            dest="parameter",
                            help="the parameter file path to be loaded")
        parser.add_argument("-D",
                            "--debug",
                            dest="debug",
                            action="store_true",
                            help="whether need to debug")
        parser.add_argument("-R",
                            "--reload",
                            dest="reload_data",
                            action="store_true",
                            help="whether need to reload data")
        parser.add_argument("-C",
                            "--cpu",
                            dest="use_cpu",
                            action="store_true",
                            help="Using cpu or not, default is using gpu")
        parser.add_argument(
            "-m",
            "--mode",
            dest="mode",
            choices=['train', 'test', 'serve'],
            default='serve',
            help="On Which mode (train,test,serve) to run singa")
        parser.add_argument('-V',
                            '--version',
                            action='version',
                            version=program_version_message)

        # Process arguments
        args = parser.parse_args()

        port = args.port
        parameter_file = args.parameter
        mode = args.mode
        need_reload = args.reload_data
        use_cpu = args.use_cpu
        debug = args.debug

        #prepare data files
        config.read('file.cfg')
        file_prepare(need_reload)

        import network as net
        model = net.create()

        #load parameter
        parameter_file = get_parameter(parameter_file)

        if parameter_file:
            print "load parameter file: %s" % parameter_file
            model.load(parameter_file)

        if use_cpu:
            raise CLIError("Currently cpu is not support!")
        else:
            print "runing with gpu"
            d = device.create_cuda_gpu()

        model.to_device(d)

        if mode == "serve":
            print "runing singa in serve mode, listen to  port: %s " % port
            global service
            from serve import Service
            service = Service(model, d)

            app.debug = debug
            app.run(host='0.0.0.0', port=port)
        elif mode == "train":
            print "runing singa in train mode"
            global trainer
            from train import Trainer
            trainer = Trainer(model, d)
            if not parameter_file:
                trainer.initialize()
            trainer.train()
        else:
            raise CLIError("Currently only serve mode is surpported!")
        return 0
    except KeyboardInterrupt:
        ### handle keyboard interrupt ###
        return 0
    except Exception, e:
        if debug:
            traceback.print_exc()
            raise (e)
        indent = len(program_name) * " "
        sys.stderr.write(program_name + ": " + str(e) + "\n")
        sys.stderr.write(indent + "  for help use --help \n\n")
        return 2