n = 2 epochs = 5000 N = 5 np.random.seed(2) samples = np.zeros((N, 2)) #samples[:,0] = np.array([0.1, 0.1, 0.5, 0.9]) #samples[:,1] = np.array([0.1, 0.9, 0.5, 0.9]) samples[:, 0] = np.array([0.1, 0.1, 0.5, 0.9, 0.9]) samples[:, 1] = np.array([0.1, 0.9, 0.5, 0.1, 0.9]) print 'Neural Gas' np.random.seed(2) ng = NG((n, n, 2)) ng.learn(samples, epochs) print 'Self-Organizing Map' np.random.seed(2) som = SOM((n, n, 2)) som.learn(samples, epochs) print 'Dynamic Self-Organizing Map' np.random.seed(2) dsom = DSOM((n, n, 2), elasticity=1.0, lrate=0.1) #dsom = DSOM((n,n,2), elasticity=1.75) dsom.learn(samples, epochs) fig = plt.figure(figsize=(21, 8)) fig.patch.set_alpha(0.0) axes = plt.subplot(1, 3, 1) ng.plot(axes)
n, p = 8, 16 epochs = 20000 N = 1000 np.random.seed(123) samples = np.zeros((N, p * p)) T = np.random.uniform(low=-np.pi / 2, high=np.pi / 2, size=N) for i in range(N): samples[i] = gaussian(shape=(p, p), sigma=(.5, 2), theta=T[i]).flatten() print 'Neural Gas' np.random.seed(123) ng = NG((n, n, p * p), init_method='fixed') ng.learn(samples, epochs, noise=0.1) print 'Self-Organizing Map' np.random.seed(123) som = SOM((n, n, p * p), init_method='fixed') som.learn(samples, epochs, noise=0.1) print 'Dynamic Self-Organizing Map' np.random.seed(123) dsom = DSOM((n, n, p * p), elasticity=1.5, init_method='fixed') dsom.learn(samples, epochs, noise=0.1) fig = plt.figure(figsize=(21, 8)) fig.patch.set_alpha(0.0) axes = plt.subplot(131, frameon=False)
return Z n,p = 8, 16 epochs = 20000 N = 1000 np.random.seed(123) samples = np.zeros((N,p*p)) T = np.random.uniform(low=-np.pi/2, high=np.pi/2, size=N) for i in range(N): samples[i] = gaussian(shape=(p,p), sigma=(.5,2), theta=T[i]).flatten() print 'Neural Gas' np.random.seed(123) ng = NG((n,n,p*p), init_method='fixed') ng.learn(samples,epochs, noise=0.1) print 'Self-Organizing Map' np.random.seed(123) som = SOM((n,n,p*p), init_method='fixed') som.learn(samples,epochs, noise=0.1) print 'Dynamic Self-Organizing Map' np.random.seed(123) dsom = DSOM((n,n,p*p), elasticity=1.5, init_method='fixed') dsom.learn(samples,epochs, noise=0.1) fig = plt.figure(figsize=(21,8)) fig.patch.set_alpha(0.0) axes = plt.subplot(131, frameon=False)
from mpl_toolkits.axes_grid import make_axes_locatable from mpl_toolkits.axes_grid import AxesGrid from network import NG,SOM,DSOM from distribution import uniform, normal, ring, image n,p = 8, 8 epochs = 10000 N = 5000 np.random.seed(123) samples = image(filename='lena.png', shape=(p,p), n=N) print 'Neural Gas' np.random.seed(123) ng = NG((n,n,p*p), init_method='fixed') ng.learn(samples,epochs) print 'Self-Organizing Map' np.random.seed(123) som = SOM((n,n,p*p), init_method='fixed') som.learn(samples,epochs) print 'Dynamic Self-Organizing Map' np.random.seed(123) dsom = DSOM((n,n,p*p), elasticity=0.5, init_method='fixed') dsom.learn(samples,epochs) # fig = plt.figure(figsize=(10,10)) # axes = plt.subplot(111, frameon=False) # plot(dsom,n,p)
size = 8 epochs = 20000 n = 10000 np.random.seed(12345) samples_1 = uniform(n=n, center=(0.25,0.25), scale=(0.25,0.25)) samples_2 = uniform(n=n, center=(0.75,0.75), scale=(0.25,0.25)) samples_3 = uniform(n=n, center=(0.25,0.75), scale=(0.25,0.25)) samples_4 = uniform(n=n, center=(0.75,0.25), scale=(0.25,0.25)) print 'Neural gas' np.random.seed(12345) ng = NG((size,size,2)) ng.learn([samples_1, samples_2, samples_3, samples_4], [2*epochs//8, 2*epochs//8, 2*epochs//8, 2*epochs//8]) print 'Self-Organizing Map' np.random.seed(12345) som = SOM((size,size,2)) som.learn([samples_1, samples_2, samples_3, samples_4], [2*epochs//8, 2*epochs//8, 2*epochs//8, 2*epochs//8]) print 'Dynamic Self-Organizing Map' np.random.seed(12345) dsom = DSOM((size,size,2), elasticity=2.5) dsom.learn([samples_1, samples_2, samples_3, samples_4], [2*epochs//8, 2*epochs//8, 2*epochs//8, 2*epochs//8]) fig = plt.figure(figsize=(21,8)) fig.patch.set_alpha(0.0)