def trainD(file_name="Distral_1col", list_of_envs=[GridworldEnv(4), GridworldEnv(5)], batch_size=128, gamma=0.999, alpha=0.9, beta=5, eps_start=0.9, eps_end=0.05, eps_decay=5, is_plot=False, num_episodes=200, max_num_steps_per_episode=1000, learning_rate=0.001, memory_replay_size=10000, memory_policy_size=1000): """ Soft Q-learning training routine. Retuns rewards and durations logs. Plot environment screen """ # action dimension num_actions = list_of_envs[0].action_space.n # total envs num_envs = len(list_of_envs) # pi_0 policy = PolicyNetwork(num_actions) # Q value, every environment has one, used to calculate A_i, models = [DQN(num_actions) for _ in range(0, num_envs)] ### Add torch.nn.ModuleList (?) # replay buffer for env ??? memories = [ReplayMemory(memory_replay_size, memory_policy_size) for _ in range(0, num_envs)] use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") # device = "cpu" print(device) # model policy = policy.to(device) for i in range(len(models)): models[i] = models[i].to(device) # optimizer for every Q model optimizers = [optim.Adam(model.parameters(), lr=learning_rate) for model in models] # optimizer for policy policy_optimizer = optim.Adam(policy.parameters(), lr=learning_rate) # optimizer = optim.RMSprop(model.parameters(), ) # info list for each environment episode_durations = [[] for _ in range(num_envs)] # list of local steps episode_rewards = [[] for _ in range(num_envs)] # list of list of episode reward episodes_done = np.zeros(num_envs) # episode num steps_done = np.zeros(num_envs) # global timesteps for each env current_time = np.zeros(num_envs) # local timesteps for each env # Initialize environments for env in list_of_envs: env.reset() while np.min(episodes_done) < num_episodes: policy.train() for model in models: model.train() # TODO: add max_num_steps_per_episode # Optimization is given by alterating minimization scheme: # 1. do the step for each env # 2. do one optimization step for each env using "soft-q-learning". # 3. do one optimization step for the policy # 1. do the step for each env for i_env, env in enumerate(list_of_envs): # print("Cur episode:", i_episode, "steps done:", steps_done, # "exploration factor:", eps_end + (eps_start - eps_end) * \ # math.exp(-1. * steps_done / eps_decay)) # last_screen = env.current_grid_map # ===========update step info begin======================== current_screen = get_screen(env) # state state = current_screen # - last_screen # action chosen by pi_1~pi_i action = select_action(state, policy, models[i_env], num_actions, eps_start, eps_end, eps_decay, episodes_done[i_env], alpha, beta, device) # global_steps steps_done[i_env] += 1 # local steps current_time[i_env] += 1 # reward _, reward, done, _ = env.step(action[0, 0]) reward = Tensor([reward]) # next state last_screen = current_screen current_screen = get_screen(env) if not done: next_state = current_screen # - last_screen else: next_state = None # add to buffer time = Tensor([current_time[i_env]]) memories[i_env].push(state, action, next_state, reward, time) # 2. do one optimization step for each env using "soft-q-learning". # Perform one step of the optimization (on the target network) optimize_model(policy, models[i_env], optimizers[i_env], memories[i_env], batch_size, alpha, beta, gamma, device) # ===========update step info end ======================== # ===========update episode info begin ==================== if done: print("ENV:", i_env, "iter:", episodes_done[i_env], "\treward:", env.episode_total_reward, "\tit:", current_time[i_env], "\texp_factor:", eps_end + (eps_start - eps_end) * math.exp(-1. * episodes_done[i_env] / eps_decay)) # reset env env.reset() # episode steps episodes_done[i_env] += 1 # append each episode local timesteps list for every env episode_durations[i_env].append(current_time[i_env]) # reset local timesteps current_time[i_env] = 0 # append total episode_reward to list episode_rewards[i_env].append(env.episode_total_reward) if is_plot: plot_rewards(episode_rewards, i_env) # ===========update episode info end ==================== # 3. do one optimization step for the policy # after all envs has performed one step, optimize policy optimize_policy(policy, policy_optimizer, memories, batch_size, num_envs, gamma, device) print('Complete') env.render(close=True) env.close() if is_plot: plt.ioff() plt.show() ## Store Results np.save(file_name + '-distral-2col-rewards', episode_rewards) np.save(file_name + '-distral-2col-durations', episode_durations) return models, policy, episode_rewards, episode_durations
log_interval = 100 model = PolicyNetwork() train_dataset = TrainDataset() test_dataset = TestDataset() train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True) test_loader = DataLoader(test_dataset, batch_size=batch_size * 2, shuffle=True, drop_last=True) model.to('cuda') optimizer = optim.Adam(model.parameters(), lr=1e-3) criterion = F.cross_entropy timestr = time.strftime("%d%m%Y-%H%M%S-") log_dir = "./runs/" + timestr + 'SLResnet' writer = SummaryWriter(log_dir=log_dir) # LOAD MODEL # Create folder models if not Path("./models").exists(): print("Creating Models folder") Path("./models").mkdir()