def shallow2(inpt, inpt_size, is_training): ''' 18-ticnn ''' end_points = {} keep_prob = tf.cond(is_training, lambda: tf.constant(0.5), lambda: tf.constant(1.0)) with tf.name_scope('reshape'): x_image = tf.reshape(inpt, [-1, inpt_size, 1, 1]) ## first conv----------------------------- num_feature = 16 out = tu.add_conv1d_layer(x_image, num_feature, 9, 2, is_training=is_training, layer_name='conv1') end_points['conv1'] = out out = tu.batch_normalization(out, is_training=is_training) out = tu.max_pool(out, ksize=4, stride=2, layer_name='pool1') end_points['pool1'] = out tu.print_activations(out) out = tu.add_conv1d_layer(out, num_feature, 9, 2, is_training=is_training, layer_name='conv2') end_points['conv2'] = out out = tu.max_pool(out, ksize=4, stride=2, layer_name='pool2') end_points['pool2'] = out tu.print_activations(out) ## fully connected layers----------------------------- with tf.name_scope('fc1'): out = tu.add_fc_layer(out, 100, relu=True, BN=True, is_training=is_training) # previously 256 nodes out = tf.nn.dropout(out, keep_prob) with tf.name_scope('fc2-1'): out1 = tu.add_fc_layer(out, 3) with tf.name_scope('fc2-2'): print(end_points.keys()) out2 = tu.add_fc_layer(out, 1) end_points['class_end'] = out1 end_points['speed_end'] = out2 return end_points
def speednet1(inpt, inpt_size, is_training): keep_prob = tf.cond(is_training, lambda: tf.constant(0.5), lambda: tf.constant(1.0)) end_point={} with tf.name_scope('reshape'): x_image = tf.reshape(inpt, [-1, inpt_size,1, 1]) with tf.name_scope('block1'): out = tu.add_conv1d_layer(x_image,32,9,3,is_training=is_training) out = tu.max_pool(out, ksize=4) end_point['block1'] = out with tf.name_scope('block8'): out2 = tu.add_fc_layer(out, 128, relu=True, BN=True, is_training=is_training) out2 = tf.nn.dropout(out2, keep_prob) with tf.name_scope('block9'): out2 = tu.add_fc_layer(out2, 1) with tf.name_scope('block2'): out = tu.add_conv1d_layer(out,64,9,is_training=is_training) out = tu.max_pool(out, ksize=4) end_point['block2'] = out with tf.name_scope('block3'): out = tu.add_conv1d_layer(out,64,9,is_training=is_training) out = tu.max_pool(out, ksize=4) with tf.name_scope('block4'): out = tu.add_conv1d_layer(out,64,9,is_training=is_training) out = tu.max_pool(out, ksize=4) # with tf.name_scope('block5'): # out = tu.add_conv1d_layer(out,64,9,is_training=is_training) # out = tu.max_pool(out, ksize=4) with tf.name_scope('block6'): out1 = tu.add_fc_layer(out, 256, relu=True, BN=True, is_training=is_training) out1 = tf.nn.dropout(out1, keep_prob) with tf.name_scope('block7'): out1 = tu.add_fc_layer(out1, 3) end_point['class_end'] = out1 end_point['speed_end'] = out2 return end_point
def res_block(inpt, out_channel, name_scope=None, down_sample=False): with tf.name_scope(name_scope): if down_sample: inpt = tu.add_conv1d_layer(inpt, out_channel, 3, 2, BN=False, layer_name='conv0') out = tu.add_conv1d_layer(inpt, out_channel // 2, 3, 1, BN=False, layer_name='conv1') out = tu.add_conv1d_layer(out, out_channel, 3, 1, BN=True, layer_name='conv2') return inpt + out
def simpnet2(inpt, inpt_size, is_training): keep_prob = tf.cond(is_training, lambda: tf.constant(0.5), lambda: tf.constant(1.0)) with tf.name_scope('reshape'): x_image = tf.reshape(inpt, [-1, inpt_size, 1, 1]) with tf.name_scope('block1'): out = tu.add_conv1d_layer(x_image, 32, 64, is_training=is_training) out = tu.max_pool(out) with tf.name_scope('block2'): out = tu.add_conv1d_layer(out, 64, 9, is_training=is_training) out = tu.max_pool(out) with tf.name_scope('block3'): out = tu.add_conv1d_layer(out, 64, 9, is_training=is_training) out = tu.max_pool(out) with tf.name_scope('block4'): out = tu.add_conv1d_layer(out, 64, 9, is_training=is_training) out = tu.max_pool(out) with tf.name_scope('block5'): out = tu.add_conv1d_layer(out, 64, 9, is_training=is_training) out = tu.max_pool(out) with tf.name_scope('block6'): out = tu.add_fc_layer(out, 128, relu=True, BN=True, is_training=is_training) out = tf.nn.dropout(out, keep_prob) with tf.name_scope('block7'): y_conv = tu.add_fc_layer(out, 3) return y_conv
def cAlex(inpt, inpt_size, is_training): keep_prob = tf.cond(is_training, lambda: tf.constant(0.5), lambda: tf.constant(1.0)) with tf.name_scope('reshape'): x_image = tf.reshape(inpt, [-1, inpt_size, 1, 1]) ## first conv----------------------------- with tf.name_scope('conv1'): conv1_out = tu.add_conv1d_layer(x_image, 16, kernel_size=64, stride=16, is_training=is_training) # output size = INPUT_SIZE/stride_size=256 --->[-1,256,1,num_feature1] # this formula is for 'padding="SAME"' situation with tf.name_scope('pool1'): h_pool1 = tu.max_pool(conv1_out, ksize=3, stride=2, padding='VALID') tu.print_activations(h_pool1) # output size: (255-3+1)/2=127(ceiling) --->[-1,127,1,num_feature1] ## second conv----------------------------- with tf.name_scope('conv2'): conv2_out = tu.add_conv1d_layer(h_pool1, 32, kernel_size=25, is_training=is_training) with tf.name_scope('pool2'): h_pool2 = tu.max_pool(conv2_out, ksize=3, stride=2, padding='VALID') tu.print_activations(h_pool2) # output size: (127-3+1)/2=63 ---> [-1,63,1,num_feature2] ## third conv----------------------------- with tf.name_scope('conv3'): conv3_out = tu.add_conv1d_layer(h_pool2, 32, 9, print_activation=False, is_training=is_training) with tf.name_scope('conv4'): conv4_out = tu.add_conv1d_layer(conv3_out, 32, 9, print_activation=False, is_training=is_training) with tf.name_scope('conv5'): conv5_out = tu.add_conv1d_layer(conv4_out, 25, 9, print_activation=False, is_training=is_training) with tf.name_scope('pool3'): h_pool3 = tu.max_pool(conv5_out, ksize=3, stride=2, padding='VALID') tu.print_activations(h_pool3) # output size: (63-3+1)/2=31 ---> [-1,31,1,num_feature5] ## fully connected layers----------------------------- with tf.name_scope('fc1'): fc1_out = tu.add_fc_layer(h_pool3, 128, relu=True, BN=True, is_training=is_training) with tf.name_scope('dropout1'): h_fc1_drop = tf.nn.dropout(fc1_out, keep_prob) with tf.name_scope('fc2'): fc1_out = tu.add_fc_layer(h_fc1_drop, 128, relu=True, BN=True, is_training=is_training) with tf.name_scope('dropout2'): h_fc2_drop = tf.nn.dropout(fc1_out, keep_prob) with tf.name_scope('fc3'): y_conv = tu.add_fc_layer(h_fc2_drop, 3) return y_conv
def cvgg19_with_pindex(inpt, inpt_size, is_training): end_points = {} keep_prob = tf.cond(is_training, lambda: tf.constant(0.5), lambda: tf.constant(1.0)) with tf.name_scope('reshape'): x_image = tf.reshape(inpt, [-1, inpt_size, 1, 1]) ## first conv----------------------------- with tf.name_scope('block1'): num_feature = 32 out = tu.add_conv1d_layer(x_image, num_feature, 9, 2, BN=False, layer_name='conv1') end_points['conv1'] = out out = tu.add_conv1d_layer(out, num_feature, 9, 2, BN=False, layer_name='conv2') end_points['conv2'] = out out = tu.batch_normalization(out, is_training=is_training) out, pool_args = tu.max_pool_with_argmax(out, 4, layer_name='pool1') end_points['pool1'] = out end_points['pool1_arg'] = pool_args tu.print_activations(out) ## second conv----------------------------- with tf.name_scope('block2'): num_feature = num_feature * 2 out = tu.add_conv1d_layer(out, num_feature, 9, BN=False, layer_name='conv3') end_points['conv3'] = out out = tu.add_conv1d_layer(out, num_feature, 9, is_training=is_training, layer_name='conv4', print_activation=True) end_points['conv4'] = out out, pool_args = tu.max_pool_with_argmax(out, 4, layer_name='pool2') end_points['pool2_arg'] = pool_args end_points['pool2'] = out tu.print_activations(out) ## third conv----------------------------- with tf.name_scope('block3'): num_feature = num_feature * 2 out = tu.add_conv1d_layer(out, num_feature, 9, BN=False, layer_name='conv6') end_points['conv6'] = out out = tu.add_conv1d_layer(out, num_feature, 9, BN=False, layer_name='conv7') end_points['conv7'] = out out = tu.add_conv1d_layer(out, num_feature, 9, is_training=is_training, layer_name='conv8', print_activation=True) end_points['conv8'] = out out, pool_args = tu.max_pool_with_argmax(out, 4, layer_name='pool3') end_points['pool3_arg'] = pool_args end_points['pool3'] = out tu.print_activations(out) ## forth conv----------------------------- with tf.name_scope('block4'): out = tu.add_conv1d_layer(out, num_feature, 9, BN=False, layer_name='conv10') end_points['conv10'] = out out = tu.add_conv1d_layer(out, num_feature, 9, BN=False, layer_name='conv11') end_points['conv11'] = out out = tu.add_conv1d_layer(out, num_feature, 9, is_training=is_training, layer_name='conv12', print_activation=True) end_points['conv12'] = out out, pool_args = tu.max_pool_with_argmax(out, 4, layer_name='pool4') end_points['pool4_arg'] = pool_args # out = tu.global_average_pool(out) end_points['pool4'] = out tu.print_activations(out) ## fully connected layers----------------------------- with tf.name_scope('fc1'): out = tu.add_fc_layer(out, 256, relu=True, BN=True, is_training=is_training) out = tf.nn.dropout(out, keep_prob) with tf.name_scope('fc4'): out = tu.add_fc_layer(out, 3) with tf.name_scope('block8'): print(end_points.keys()) out2 = tu.add_fc_layer(end_points['pool4'], 256, relu=True, BN=True, is_training=is_training) out2 = tf.nn.dropout(out2, keep_prob) with tf.name_scope('block9'): out2 = tu.add_fc_layer(out2, 1) end_points['class_end'] = out end_points['speed_end'] = out2 return end_points
def cvgg19_3(inpt, inpt_size, is_training, num_class=3): end_points = {} keep_prob = tf.cond(is_training, lambda: tf.constant(0.5), lambda: tf.constant(1.0)) with tf.name_scope('reshape'): x_image = tf.reshape(inpt, [-1, inpt_size, 1, 1]) ## first conv----------------------------- num_feature = 16 out = tu.add_conv1d_layer(x_image, num_feature, 9, 2, BN=False, layer_name='conv1') end_points['conv1'] = out out = tu.add_conv1d_layer(out, num_feature, 9, 2, BN=False, layer_name='conv2') end_points['conv2'] = out out = tu.batch_normalization(out, is_training=is_training) out = tu.max_pool(out, ksize=4, layer_name='pool1') end_points['pool1'] = out tu.print_activations(out) ## second conv----------------------------- num_feature = num_feature * 2 out = tu.add_conv1d_layer(out, num_feature, 9, BN=False, layer_name='conv3') end_points['conv3'] = out out = tu.add_conv1d_layer(out, num_feature, 9, is_training=is_training, layer_name='conv4', print_activation=True) end_points['conv4'] = out out = tu.max_pool(out, ksize=4, layer_name='pool2') end_points['pool2'] = out tu.print_activations(out) ## third conv----------------------------- num_feature = num_feature * 2 out = tu.add_conv1d_layer(out, num_feature, 9, BN=False, layer_name='conv6') end_points['conv5'] = out out = tu.add_conv1d_layer(out, num_feature, 9, BN=False, layer_name='conv7') end_points['conv6'] = out out = tu.add_conv1d_layer(out, num_feature, 9, is_training=is_training, layer_name='conv8', print_activation=True) end_points['conv7'] = out out = tu.max_pool(out, ksize=4, layer_name='pool3') end_points['pool3'] = out tu.print_activations(out) ## forth conv----------------------------- out = tu.add_conv1d_layer(out, num_feature, 9, BN=False, layer_name='conv10') end_points['conv8'] = out out = tu.add_conv1d_layer(out, num_feature, 9, BN=False, layer_name='conv11') end_points['conv9'] = out out1 = tu.add_conv1d_layer(out, num_class, 1, is_training=is_training, layer_name='conv10', print_activation=True) out2 = tu.add_conv1d_layer(out, 1, 1, is_training=is_training, layer_name='conv11', print_activation=True) end_points['conv10'] = out1 # out = tu.max_pool(out, ksize=4, layer_name='pool4') out1 = tu.global_average_pool(out1) out2 = tu.global_average_pool(out2) end_points['GAP'] = out1 tu.print_activations(out1) out1 = tf.reshape(out1, [-1, num_class]) out2 = tf.reshape(out2, [-1, 1]) print("out1" + str(out1.get_shape().as_list())) print("out2" + str(out2.get_shape().as_list())) end_points['class_end'] = out1 end_points['speed_end'] = out2 return end_points
def cvgg19_2(inpt, inpt_size, is_training): end_points = {} keep_prob = tf.cond(is_training, lambda: tf.constant(0.5), lambda: tf.constant(1.0)) with tf.name_scope('reshape'): x_image = tf.reshape(inpt, [-1, inpt_size, 1, 1]) ## first conv----------------------------- num_feature = 16 out = tu.add_conv1d_layer(x_image, num_feature, 9, 2, BN=False, layer_name='conv1') end_points['conv1'] = out out = tu.add_conv1d_layer(out, num_feature, 9, 2, BN=False, layer_name='conv2') end_points['conv2'] = out out = tu.batch_normalization(out, is_training=is_training) out = tu.max_pool(out, ksize=4, layer_name='pool1') end_points['pool1'] = out tu.print_activations(out) ## second conv----------------------------- num_feature = num_feature * 2 out = tu.add_conv1d_layer(out, num_feature, 9, BN=False, layer_name='conv3') end_points['conv3'] = out out = tu.add_conv1d_layer(out, num_feature, 9, is_training=is_training, layer_name='conv4', print_activation=True) end_points['conv4'] = out out = tu.max_pool(out, ksize=4, layer_name='pool2') end_points['pool2'] = out tu.print_activations(out) ## third conv----------------------------- num_feature = num_feature * 2 out = tu.add_conv1d_layer(out, num_feature, 9, BN=False, layer_name='conv6') end_points['conv5'] = out out = tu.add_conv1d_layer(out, num_feature, 9, BN=False, layer_name='conv7') end_points['conv6'] = out out = tu.add_conv1d_layer(out, num_feature, 9, is_training=is_training, layer_name='conv8', print_activation=True) end_points['conv7'] = out out = tu.max_pool(out, ksize=4, layer_name='pool3') end_points['pool3'] = out tu.print_activations(out) ## forth conv----------------------------- out = tu.add_conv1d_layer(out, num_feature, 9, BN=False, layer_name='conv10') end_points['conv8'] = out out = tu.add_conv1d_layer(out, num_feature, 9, BN=False, layer_name='conv11') end_points['conv9'] = out out = tu.add_conv1d_layer(out, num_feature, 9, is_training=is_training, layer_name='conv12', print_activation=True) end_points['conv10'] = out # out = tu.max_pool(out, ksize=4, layer_name='pool4') out = tu.global_average_pool(out) end_points['GAP'] = out tu.print_activations(out) ## fully connected layers----------------------------- with tf.name_scope('fc1'): out = tu.add_fc_layer(out, 256, relu=True, BN=True, is_training=is_training) out = tf.nn.dropout(out, keep_prob) with tf.name_scope('fc2-1'): out1 = tu.add_fc_layer(out, 3) with tf.name_scope('fc2-2'): out2 = tu.add_fc_layer(out, 1) end_points['class_end'] = out1 end_points['speed_end'] = out2 return end_points