示例#1
0
def initialize_networks(args, device):
    # network
    En_A = networks.encoder(in_nc=args.in_ngc,
                            nf=args.ngf,
                            img_size=args.img_size).to(device)
    En_B = networks.encoder(in_nc=args.in_ngc,
                            nf=args.ngf,
                            img_size=args.img_size).to(device)
    De_A = networks.decoder(out_nc=args.out_ngc, nf=args.ngf).to(device)
    De_B = networks.decoder(out_nc=args.out_ngc, nf=args.ngf).to(device)
    Disc_A = networks.discriminator(in_nc=args.in_ndc,
                                    out_nc=args.out_ndc,
                                    nf=args.ndf,
                                    img_size=args.img_size).to(device)
    Disc_B = networks.discriminator(in_nc=args.in_ndc,
                                    out_nc=args.out_ndc,
                                    nf=args.ndf,
                                    img_size=args.img_size).to(device)

    print('---------- Networks initialized -------------')
    utils.print_network(En_A)
    utils.print_network(En_B)
    utils.print_network(De_A)
    utils.print_network(De_B)
    utils.print_network(Disc_A)
    utils.print_network(Disc_B)
    print('-----------------------------------------------')

    all_networks = [En_A, En_B, De_A, De_B, Disc_A, Disc_B]
    return all_networks
  def test_discriminator_invalid_input(self):
    wrong_dim_input = tf.zeros([5, 32, 32])
    with self.assertRaisesRegexp(ValueError, 'Shape must be rank 4'):
      networks.discriminator(wrong_dim_input)

    not_fully_defined = tf.placeholder(tf.float32, [3, None, 32, 3])
    with self.assertRaisesRegexp(ValueError, 'Shape .* is not fully defined'):
      networks.compression_model(not_fully_defined)
示例#3
0
文件: train.py 项目: anuj2110/GANs
def get_GAN(shape,discriminator,generator,optimizer):
    discriminator.trainable = False
    inp = Input(shape=shape)
    x = generator(inp)
    out = discriminator(x)
    GAN = Model(inputs=inp,outputs=[x,out])
    GAN.compile(loss=[vgg_loss,'binary_crossentropy'],loss_weights=[1,1e-3],optimizer=optimizer)
    return GAN
示例#4
0
 def get_discr_pred(self, inputs, scope, reuse=False):
     """Build and get Dsicriminator preds.
   Based on ICML paper
   """
     with tf.variable_scope('discriminator/' + scope, reuse=reuse):
         logits, probs = discriminator(self.opts, inputs)
         clipped = tf.clip_by_value(probs, 1e-6, 1 - 1e-6)
     return logits, clipped
 def _discriminator_fn(x):
     """Builds discriminator network."""
     return networks.discriminator(x,
                                   progress,
                                   _num_filters_fn,
                                   resolution_schedule,
                                   num_blocks=num_blocks,
                                   kernel_size=kernel_size)
def train():
    real_img = tf.placeholder(tf.float32, [None, H, W, 3])
    label = tf.placeholder(tf.int32, [None])
    z = tf.placeholder(tf.float32, [None, 100])
    one_hot_label = tf.one_hot(label, NUMS_CLASS)
    labeled_z = tf.concat([z, one_hot_label], axis=1)
    G = generator("generator")
    D = discriminator("discriminator")
    fake_img = G(labeled_z)
    class_fake_logits, adv_fake_logits = D(fake_img, NUMS_CLASS)
    class_real_logits, adv_real_logits = D(real_img, NUMS_CLASS)
    loss_d_real = -tf.reduce_mean(tf.log(adv_real_logits + EPSILON))
    loss_d_fake = -tf.reduce_mean(tf.log(1 - adv_fake_logits + EPSILON))
    loss_cls_real = -tf.reduce_mean(
        tf.log(
            tf.reduce_sum(class_real_logits * one_hot_label, axis=1) +
            EPSILON))
    loss_cls_fake = -tf.reduce_mean(
        tf.log(
            tf.reduce_sum(class_fake_logits * one_hot_label, axis=1) +
            EPSILON))
    D_loss = loss_d_real + loss_d_fake + loss_cls_real
    G_loss = -tf.reduce_mean(tf.log(adv_fake_logits + EPSILON)) + loss_cls_fake

    D_opt = tf.train.AdamOptimizer(2e-4,
                                   beta1=0.5).minimize(D_loss,
                                                       var_list=D.var_list())
    G_opt = tf.train.AdamOptimizer(2e-4,
                                   beta1=0.5).minimize(G_loss,
                                                       var_list=G.var_list())
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver()
    data, labels = read_face_data("./dataset/face_woman_man.mat")
    for i in range(50000):
        s = time.time()
        for j in range(1):
            BATCH, LABELS, Z = get_batch_face(data, labels, BATCHSIZE)
            BATCH = BATCH / 127.5 - 1.0
            sess.run(D_opt, feed_dict={real_img: BATCH, label: LABELS, z: Z})
        sess.run(G_opt, feed_dict={real_img: BATCH, label: LABELS, z: Z})
        e = time.time()
        if i % 100 == 0:
            [D_LOSS, G_LOSS, FAKE_IMG] = sess.run([D_loss, G_loss, fake_img],
                                                  feed_dict={
                                                      real_img: BATCH,
                                                      label: LABELS,
                                                      z: Z
                                                  })
            Image.fromarray(np.uint8((FAKE_IMG[0, :, :, :] + 1) *
                                     127.5)).save("./results/" + str(i) + "_" +
                                                  str(int(LABELS[0])) + ".jpg")
            print("Iteration: %d, D_loss: %f, G_loss: %f, update_time: %f" %
                  (i, D_LOSS, G_LOSS, e - s))
        if i % 500 == 0:
            saver.save(sess, "./save_para/model.ckpt")
    pass
示例#7
0
文件: loss.py 项目: ahxc/CartoonGAN
def gradient_penalty(real_img, fake_image, scope='discriminator'):
    difference = real_img-fake_image
    alpha = tf.random_uniform(shape=[1,1,1,1], minval=0., maxval=1.)
    interpolates = real_img+alpha*difference
    
    gradients = tf.gradients(discriminator(interpolates, reuse=True, scope=scope), [interpolates])[0]
    slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients),reduction_indices=[1,2,3]))

    return tf.reduce_mean((slopes-1.)**2)
示例#8
0
  def test_discriminator(self):
    batch_size = 5
    image = tf.random_uniform([batch_size, 32, 32, 3], -1, 1)
    dis_output = networks.discriminator(image, None)
    with self.test_session(use_gpu=True) as sess:
      sess.run(tf.global_variables_initializer())
      dis_output_np = dis_output.eval()

    self.assertAllEqual([batch_size, 1], dis_output_np.shape)
示例#9
0
文件: train.py 项目: ALISCIFP/models
 def _discriminator_fn(x):
   """Builds discriminator network."""
   return networks.discriminator(
       x,
       progress,
       _num_filters_fn,
       resolution_schedule,
       num_blocks=num_blocks,
       kernel_size=kernel_size)
示例#10
0
  def test_discriminator_graph(self):
    # Check graph construction for a number of image size/depths and batch
    # sizes.
    for batch_size, patch_size in zip([3, 6], [70, 128]):
      tf.reset_default_graph()
      img = tf.ones([batch_size, patch_size, patch_size, 3])
      disc_output = networks.discriminator(img)

      self.assertEqual(2, disc_output.shape.ndims)
      self.assertEqual(batch_size, disc_output.shape.as_list()[0])
示例#11
0
  def test_discriminator_graph(self):
    # Check graph construction for a number of image size/depths and batch
    # sizes.
    for batch_size, patch_size in zip([3, 6], [70, 128]):
      tf.reset_default_graph()
      img = tf.ones([batch_size, patch_size, patch_size, 3])
      disc_output = networks.discriminator(img)

      self.assertEqual(2, disc_output.shape.ndims)
      self.assertEqual(batch_size, disc_output.shape[0])
示例#12
0
文件: train.py 项目: anuj2110/GANs
def train(epochs=1,batch_size=128):

if(not os.path.isdir('/content/output/')):
    os.mkdir('/content/output/')
downscale_factor = 4
batch_count = int(x_train_hr.shape[0] / batch_size)
shape = (img_shape[0]//downscale_factor, img_shape[1]//downscale_factor, img_shape[2])

gen = generator(shape).generator_model()
disc = discriminator(img_shape).discriminator_model()

adam = Adam(lr=1E-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
gen.compile(loss=vgg_loss, optimizer=adam)
disc.compile(loss="binary_crossentropy", optimizer=adam)

shape = (img_shape[0]//downscale_factor, img_shape[1]//downscale_factor, 3)
gan = get_GAN(shape, disc, gen, adam)

for e in range(1, epochs+1):
    print ('-'*15, 'Epoch %d' % e, '-'*15)
    for _ in range(batch_count):
        
        rand_nums = np.random.randint(0, x_train_hr.shape[0], size=batch_size)
        
        image_batch_hr = x_train_hr[rand_nums]
        image_batch_lr = x_train_lr[rand_nums]
        generated_images_sr = gen.predict(image_batch_lr)

        real_data_Y = np.ones(batch_size) - np.random.random_sample(batch_size)*0.2
        fake_data_Y = np.random.random_sample(batch_size)*0.2
        
        disc.trainable = True
        
        d_loss_real = disc.train_on_batch(image_batch_hr, real_data_Y)
        d_loss_fake = disc.train_on_batch(generated_images_sr, fake_data_Y)
        #d_loss = 0.5 * np.add(d_loss_fake, d_loss_real)
        
        rand_nums = np.random.randint(0, x_train_hr.shape[0], size=batch_size)
        image_batch_hr = x_train_hr[rand_nums]
        image_batch_lr = x_train_lr[rand_nums]

        gan_Y = np.ones(batch_size) - np.random.random_sample(batch_size)*0.2
        disc.trainable = False
        loss_gan = gan.train_on_batch(image_batch_lr, [image_batch_hr,gan_Y])
        
    print("Loss HR , Loss LR, Loss GAN")
    print(d_loss_real, d_loss_fake, loss_gan)

    if e == 1 or e % 5 == 0:
        plot_generated_images(e, gen)
    if e % 50 == 0:
        generator.save('./output/gen_model%d.h5' % e)
        discriminator.save('./output/dis_model%d.h5' % e)
        gan.save('./output/gan_model%d.h5' % e)
train(20000,4)
示例#13
0
def train(dataset, gpu_id):

    params = param.getGeneralParams()
    gpu = '/gpu:' + str(gpu_id)

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True
    set_session(tf.Session(config=config))

    with tf.device(gpu):
        vgg_model = myVGG.vgg_norm()
        networks.make_trainable(vgg_model, False)
        response_weights = sio.loadmat('mean_response.mat')
        fgbg = networks.network_fgbg(params, vgg_model, response_weights)
        #fgbg.load_weights('../results/networks/fgbg_vgg/140000.h5')
        disc = networks.discriminator(params)
        gan = networks.gan(fgbg, disc, params, vgg_model, response_weights,
                           0.01, 1e-4)
        gan.load_weights('../results/networks/fgbg_gan/2000.h5')

        outputs = [fgbg.outputs[0]]
        #outputs.append(fgbg.get_layer('mask_src').output)
        #outputs.append(fgbg.get_layer('fg_stack').output)
        #outputs.append(fgbg.get_layer('bg_src').output)
        #outputs.append(fgbg.get_layer('bg_tgt').output)
        #outputs.append(fgbg.get_layer('fg_tgt').output)
        outputs.append(fgbg.get_layer('fg_mask_tgt').output)
        model = Model(fgbg.inputs, outputs)

    test = datareader.makeActionExampleList('test_vids.txt', 1)
    feed = datageneration.warpExampleGenerator(test,
                                               params,
                                               do_augment=False,
                                               return_pose_vectors=True)

    n_frames = len(test)

    true_action = np.zeros((256, 256, 3, n_frames))
    pred_action = np.zeros((256, 256, 3, n_frames))
    mask = np.zeros((256, 256, 1, n_frames))

    for i in xrange(n_frames):
        print i
        X, Y = next(feed)
        pred = model.predict(X[:-2])
        true_action[:, :, :, i] = convert(np.reshape(Y, (256, 256, 3)))
        pred_action[:, :, :, i] = convert(np.reshape(pred[0], (256, 256, 3)))
        mask[:, :, :, i] = pred[1]

    sio.savemat('results/action/1_gan.mat', {
        'true': true_action,
        'pred': pred_action,
        'mask': mask
    })
示例#14
0
    def test_discriminator_grad_norm_progress(self):
        stable_stage_num_images = 2
        transition_stage_num_images = 3

        current_image_id_ph = tf.placeholder(tf.int32, [])
        progress = networks.compute_progress(current_image_id_ph,
                                             stable_stage_num_images,
                                             transition_stage_num_images,
                                             num_blocks=3)
        x = tf.random_normal([2, 16, 16, 3])
        logits, _ = networks.discriminator(
            x, progress, _num_filters_stub,
            networks.ResolutionSchedule(start_resolutions=(4, 4),
                                        scale_base=2,
                                        num_resolutions=3))
        fake_loss = tf.reduce_sum(tf.square(logits))
        grad_norms = [
            _get_grad_norm(
                fake_loss,
                tf.trainable_variables('.*/progressive_gan_block_1/.*')),
            _get_grad_norm(
                fake_loss,
                tf.trainable_variables('.*/progressive_gan_block_2/.*')),
            _get_grad_norm(
                fake_loss,
                tf.trainable_variables('.*/progressive_gan_block_3/.*'))
        ]

        grad_norms_output = None
        with self.test_session(use_gpu=True) as sess:
            sess.run(tf.global_variables_initializer())
            grad_norms_output = np.array([
                sess.run(grad_norms, feed_dict={current_image_id_ph: i})
                for i in range(15)  # total num of images
            ])

        # The gradient of block_1 is always on.
        self.assertEqual(
            np.argmax(grad_norms_output[:, 0] > 0), 0,
            'gradient norms {} for block 1 is not always on'.format(
                grad_norms_output[:, 0]))
        # The gradient of block_2 is on after 1 stable stage.
        self.assertEqual(
            np.argmax(grad_norms_output[:, 1] > 0), 3,
            'gradient norms {} for block 2 is not on at step 3'.format(
                grad_norms_output[:, 1]))
        # The gradient of block_3 is on after 2 stable stage + 1 transition stage.
        self.assertEqual(
            np.argmax(grad_norms_output[:, 2] > 0), 8,
            'gradient norms {} for block 3 is not on at step 8'.format(
                grad_norms_output[:, 2]))
示例#15
0
 def get_discr_pred(self, inputs, scope, reuse=False):
     """Build and get Discriminator preds.
   Based on ICML paper
   """
     with tf.variable_scope('discriminator/' + scope, reuse=reuse):
         logits, probs = discriminator(self.opts, inputs)
         """
       if scope == 'TC':
           logits, probs = discriminator(self.opts, inputs)
       elif scope == 'dimwise':
           logits, probs = dimwise_discriminator(self.opts, inputs)
       else:
           raise Exception('Unknown {} scope for Discriminator'.format(scope))
       """
         clipped = tf.clip_by_value(probs, 1e-6, 1 - 1e-6)
     return logits, clipped
def discriminator_fn_specgram(images, **kwargs):
    """Builds discriminator network."""
    shape = images.shape
    normalizer = data_normalizer.registry[kwargs['data_normalizer']](kwargs)
    images = normalizer.normalize_op(images)
    images.set_shape(shape)
    logits, end_points = networks.discriminator(
        images,
        kwargs['progress'],
        lambda block_id: _num_filters_fn(block_id, **kwargs),
        kwargs['resolution_schedule'],
        num_blocks=kwargs['num_blocks'],
        kernel_size=kwargs['kernel_size'],
        simple_arch=kwargs['simple_arch'])
    with tf.variable_scope('discriminator_cond'):
        x = tf.layers.flatten(end_points['last_conv'])
        end_points['classification_logits'] = layers.custom_dense(
            x=x, units=kwargs['num_tokens'], scope='classification_logits')
    return logits, end_points
示例#17
0
    def __init__(self, options):
        super(ArtGAN, self).__init__()
        # build model
        self.encoder = encoder(options)
        self.decoder = decoder(options)
        self.discriminator = discriminator(options)
        self.discriminator_weight = {
            "pred_1": 1.,
            "pred_2": 1.,
            "pred_4": 1.,
            "pred_6": 1.,
            "pred_7": 1.
        }
        self.loss = nn.BCEWithLogitsLoss(reduction='mean')
        self.mse = nn.MSELoss(reduction='mean')
        self.abs = nn.L1Loss(reduction='mean')

        # Setup the optimizers
        dis_params = list(self.discriminator.parameters())
        gen_params = list(self.encoder.parameters()) + list(
            self.decoder.parameters())
        self.dis_opt = torch.optim.Adam(
            [p for p in dis_params if p.requires_grad],
            lr=options.lr,
            betas=(0.5, 0.999),
            weight_decay=0.0001,
            amsgrad=True)
        self.gen_opt = torch.optim.Adam(
            [p for p in gen_params if p.requires_grad],
            lr=options.lr,
            betas=(0.5, 0.999),
            weight_decay=0.0001,
            amsgrad=True)
        self.dis_scheduler = get_scheduler(self.dis_opt, options)
        self.gen_scheduler = get_scheduler(self.gen_opt, options)

        # Network weight initialization
        self.apply(weights_init(options.init))
        self.discriminator.apply(weights_init('gaussian'))
        self.gener_loss = torch.tensor(0.)
        self.discr_loss = torch.tensor(0.)
示例#18
0
文件: model.py 项目: ruiliu-ai/DivCo
    def __init__(self, opts):
        super(DivCo_DCGAN, self).__init__()
        # parameters
        lr = 0.0002
        self.nz = opts.nz
        self.opt = opts
        self.class_num = opts.class_num
        self.G = networks.generator(opts)
        self.D = networks.discriminator(opts)

        self.gen_opt = torch.optim.Adam(self.G.parameters(),
                                        lr=lr,
                                        betas=(0.5, 0.999),
                                        weight_decay=0.0001)
        self.dis_opt = torch.optim.Adam(self.D.parameters(),
                                        lr=lr,
                                        betas=(0.5, 0.999),
                                        weight_decay=0.0001)

        self.BCE_loss = torch.nn.BCELoss()
        self.cross_entropy_loss = torch.nn.CrossEntropyLoss()
示例#19
0
 def __init__(self):
     # Paper: Context Encoders: Feature Learning by Inpainting
     self.inputs = tf.placeholder(tf.float32, [None, IMG_H, IMG_W, IMG_C])
     self.patch = tf.placeholder(tf.float32, [None, MASK_H, MASK_W, IMG_C])
     self.train_phase = tf.placeholder(tf.bool)
     G = generator("generator")
     D = discriminator("discriminator")
     self.patch_fake = G(self.inputs, self.train_phase)
     self.fake_logits = D(self.patch_fake, self.train_phase)
     self.real_logits = D(self.patch, self.train_phase)
     self.D_loss = -tf.reduce_mean(
         tf.log(self.real_logits + EPSILON) +
         tf.log(1 - self.fake_logits + EPSILON))
     self.G_loss = -tf.reduce_mean(
         tf.log(self.fake_logits + EPSILON)) + 100 * tf.reduce_mean(
             tf.reduce_sum(tf.square(self.patch - self.patch_fake),
                           [1, 2, 3]))
     self.D_Opt = tf.train.AdamOptimizer(2e-4).minimize(
         self.D_loss, var_list=D.get_var())
     self.G_Opt = tf.train.AdamOptimizer(2e-4).minimize(
         self.G_loss, var_list=G.get_var())
     self.sess = tf.Session()
     self.sess.run(tf.global_variables_initializer())
示例#20
0
 def test_discriminator_invalid_input(self):
   with self.assertRaisesRegexp(ValueError, 'Shape must be rank 4'):
     networks.discriminator(tf.zeros([28, 28, 3]))
示例#21
0
 def test_discriminator_run(self):
   img_batch = tf.zeros([3, 70, 70, 3])
   disc_output = networks.discriminator(img_batch)
   with self.test_session() as sess:
     sess.run(tf.global_variables_initializer())
     sess.run(disc_output)
示例#22
0
# network
G = networks.generator(args.in_ngc, args.out_ngc, args.ngf, args.nb)
if args.latest_generator_model != '':
    if torch.cuda.is_available():
        G.load_state_dict(torch.load(args.latest_generator_model))
    else:
        # cpu mode
        G.load_state_dict(
            torch.load(args.latest_generator_model,
                       map_location=lambda storage, loc: storage))
G.to(device)
G.train()

D = []
for i in range(len(targets_dir)):
    tmpD = networks.discriminator(args.in_ndc, args.out_ndc, args.ndf)
    if args.latest_discriminator_model != '':
        if torch.cuda.is_available():
            tmpD.load_state_dict(
                torch.load(targets_dir[i] + args.latest_discriminator_model))
        else:
            tmpD.load_state_dict(
                torch.load(targets_dir[i] + args.latest_discriminator_model,
                           map_location=lambda storage, loc: storage))
    tmpD.to(device)
    tmpD.train()
    D.append(tmpD)

VGG = networks.VGG19(init_weights=args.vgg_model, feature_mode=True)
VGG.to(device)
VGG.eval()
示例#23
0
def main():
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    if torch.backends.cudnn.enabled:
        torch.backends.cudnn.benchmark = True

    prepare_result()
    make_edge_promoting_img()

    # data_loader
    src_transform = transforms.Compose([
        transforms.Resize((args.input_size, args.input_size)),
        transforms.ToTensor(),
        transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
    ])

    tgt_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
    ])
    train_loader_src = utils.data_load(os.path.join('data', args.src_data),
                                       'train',
                                       src_transform,
                                       args.batch_size,
                                       shuffle=True,
                                       drop_last=True)
    train_loader_tgt = utils.data_load(os.path.join('data', args.tgt_data),
                                       'pair',
                                       tgt_transform,
                                       args.batch_size,
                                       shuffle=True,
                                       drop_last=True)
    test_loader_src = utils.data_load(os.path.join('data', args.src_data),
                                      'test',
                                      src_transform,
                                      1,
                                      shuffle=True,
                                      drop_last=True)

    # network
    G = networks.generator(args.in_ngc, args.out_ngc, args.ngf, args.nb)
    if args.latest_generator_model != '':
        if torch.cuda.is_available():
            G.load_state_dict(torch.load(args.latest_generator_model))
        else:
            # cpu mode
            G.load_state_dict(
                torch.load(args.latest_generator_model,
                           map_location=lambda storage, loc: storage))

    D = networks.discriminator(args.in_ndc, args.out_ndc, args.ndf)
    if args.latest_discriminator_model != '':
        if torch.cuda.is_available():
            D.load_state_dict(torch.load(args.latest_discriminator_model))
        else:
            D.load_state_dict(
                torch.load(args.latest_discriminator_model,
                           map_location=lambda storage, loc: storage))
    VGG = networks.VGG19(init_weights=args.vgg_model, feature_mode=True)

    G.to(device)
    D.to(device)
    VGG.to(device)

    G.train()
    D.train()

    VGG.eval()

    print('---------- Networks initialized -------------')
    utils.print_network(G)
    utils.print_network(D)
    utils.print_network(VGG)
    print('-----------------------------------------------')

    # loss
    BCE_loss = nn.BCELoss().to(device)
    L1_loss = nn.L1Loss().to(device)

    # Adam optimizer
    G_optimizer = optim.Adam(G.parameters(),
                             lr=args.lrG,
                             betas=(args.beta1, args.beta2))
    D_optimizer = optim.Adam(D.parameters(),
                             lr=args.lrD,
                             betas=(args.beta1, args.beta2))
    G_scheduler = optim.lr_scheduler.MultiStepLR(
        optimizer=G_optimizer,
        milestones=[args.train_epoch // 2, args.train_epoch // 4 * 3],
        gamma=0.1)
    D_scheduler = optim.lr_scheduler.MultiStepLR(
        optimizer=D_optimizer,
        milestones=[args.train_epoch // 2, args.train_epoch // 4 * 3],
        gamma=0.1)

    pre_train_hist = {}
    pre_train_hist['Recon_loss'] = []
    pre_train_hist['per_epoch_time'] = []
    pre_train_hist['total_time'] = []
    """ Pre-train reconstruction """
    if args.latest_generator_model == '':
        print('Pre-training start!')
        start_time = time.time()
        for epoch in range(args.pre_train_epoch):
            epoch_start_time = time.time()
            Recon_losses = []
            for x, _ in train_loader_src:
                x = x.to(device)

                # train generator G
                G_optimizer.zero_grad()

                x_feature = VGG((x + 1) / 2)
                G_ = G(x)
                G_feature = VGG((G_ + 1) / 2)

                Recon_loss = 10 * L1_loss(G_feature, x_feature.detach())
                Recon_losses.append(Recon_loss.item())
                pre_train_hist['Recon_loss'].append(Recon_loss.item())

                Recon_loss.backward()
                G_optimizer.step()

            per_epoch_time = time.time() - epoch_start_time
            pre_train_hist['per_epoch_time'].append(per_epoch_time)
            print('[%d/%d] - time: %.2f, Recon loss: %.3f' %
                  ((epoch + 1), args.pre_train_epoch, per_epoch_time,
                   torch.mean(torch.FloatTensor(Recon_losses))))

        total_time = time.time() - start_time
        pre_train_hist['total_time'].append(total_time)
        with open(os.path.join(args.name + '_results', 'pre_train_hist.pkl'),
                  'wb') as f:
            pickle.dump(pre_train_hist, f)

        with torch.no_grad():
            G.eval()
            for n, (x, _) in enumerate(train_loader_src):
                x = x.to(device)
                G_recon = G(x)
                result = torch.cat((x[0], G_recon[0]), 2)
                path = os.path.join(
                    args.name + '_results', 'Reconstruction',
                    args.name + '_train_recon_' + str(n + 1) + '.png')
                plt.imsave(path,
                           (result.cpu().numpy().transpose(1, 2, 0) + 1) / 2)
                if n == 4:
                    break

            for n, (x, _) in enumerate(test_loader_src):
                x = x.to(device)
                G_recon = G(x)
                result = torch.cat((x[0], G_recon[0]), 2)
                path = os.path.join(
                    args.name + '_results', 'Reconstruction',
                    args.name + '_test_recon_' + str(n + 1) + '.png')
                plt.imsave(path,
                           (result.cpu().numpy().transpose(1, 2, 0) + 1) / 2)
                if n == 4:
                    break
    else:
        print('Load the latest generator model, no need to pre-train')

    train_hist = {}
    train_hist['Disc_loss'] = []
    train_hist['Gen_loss'] = []
    train_hist['Con_loss'] = []
    train_hist['per_epoch_time'] = []
    train_hist['total_time'] = []
    print('training start!')
    start_time = time.time()
    real = torch.ones(args.batch_size, 1, args.input_size // 4,
                      args.input_size // 4).to(device)
    fake = torch.zeros(args.batch_size, 1, args.input_size // 4,
                       args.input_size // 4).to(device)
    for epoch in range(args.train_epoch):
        epoch_start_time = time.time()
        G.train()
        Disc_losses = []
        Gen_losses = []
        Con_losses = []
        for (x, _), (y, _) in zip(train_loader_src, train_loader_tgt):
            e = y[:, :, :, args.input_size:]
            y = y[:, :, :, :args.input_size]
            x, y, e = x.to(device), y.to(device), e.to(device)

            # train D
            D_optimizer.zero_grad()

            D_real = D(y)
            D_real_loss = BCE_loss(D_real, real)

            G_ = G(x)
            D_fake = D(G_)
            D_fake_loss = BCE_loss(D_fake, fake)

            D_edge = D(e)
            D_edge_loss = BCE_loss(D_edge, fake)

            Disc_loss = D_real_loss + D_fake_loss + D_edge_loss
            Disc_losses.append(Disc_loss.item())
            train_hist['Disc_loss'].append(Disc_loss.item())

            Disc_loss.backward()
            D_optimizer.step()

            # train G
            G_optimizer.zero_grad()

            G_ = G(x)
            D_fake = D(G_)
            D_fake_loss = BCE_loss(D_fake, real)

            x_feature = VGG((x + 1) / 2)
            G_feature = VGG((G_ + 1) / 2)
            Con_loss = args.con_lambda * L1_loss(G_feature, x_feature.detach())

            Gen_loss = D_fake_loss + Con_loss
            Gen_losses.append(D_fake_loss.item())
            train_hist['Gen_loss'].append(D_fake_loss.item())
            Con_losses.append(Con_loss.item())
            train_hist['Con_loss'].append(Con_loss.item())

            Gen_loss.backward()
            G_optimizer.step()

        G_scheduler.step()
        D_scheduler.step()

        per_epoch_time = time.time() - epoch_start_time
        train_hist['per_epoch_time'].append(per_epoch_time)
        print(
            '[%d/%d] - time: %.2f, Disc loss: %.3f, Gen loss: %.3f, Con loss: %.3f'
            % ((epoch + 1), args.train_epoch, per_epoch_time,
               torch.mean(torch.FloatTensor(Disc_losses)),
               torch.mean(torch.FloatTensor(Gen_losses)),
               torch.mean(torch.FloatTensor(Con_losses))))

        if epoch % 2 == 1 or epoch == args.train_epoch - 1:
            with torch.no_grad():
                G.eval()
                for n, (x, _) in enumerate(train_loader_src):
                    x = x.to(device)
                    G_recon = G(x)
                    result = torch.cat((x[0], G_recon[0]), 2)
                    path = os.path.join(
                        args.name + '_results', 'Transfer',
                        str(epoch + 1) + '_epoch_' + args.name + '_train_' +
                        str(n + 1) + '.png')
                    plt.imsave(path,
                               (result.cpu().numpy().transpose(1, 2, 0) + 1) /
                               2)
                    if n == 4:
                        break

                for n, (x, _) in enumerate(test_loader_src):
                    x = x.to(device)
                    G_recon = G(x)
                    result = torch.cat((x[0], G_recon[0]), 2)
                    path = os.path.join(
                        args.name + '_results', 'Transfer',
                        str(epoch + 1) + '_epoch_' + args.name + '_test_' +
                        str(n + 1) + '.png')
                    plt.imsave(path,
                               (result.cpu().numpy().transpose(1, 2, 0) + 1) /
                               2)
                    if n == 4:
                        break

                torch.save(
                    G.state_dict(),
                    os.path.join(args.name + '_results',
                                 'generator_latest.pkl'))
                torch.save(
                    D.state_dict(),
                    os.path.join(args.name + '_results',
                                 'discriminator_latest.pkl'))

    total_time = time.time() - start_time
    train_hist['total_time'].append(total_time)

    print("Avg one epoch time: %.2f, total %d epochs time: %.2f" %
          (torch.mean(torch.FloatTensor(
              train_hist['per_epoch_time'])), args.train_epoch, total_time))
    print("Training finish!... save training results")

    torch.save(G.state_dict(),
               os.path.join(args.name + '_results', 'generator_param.pkl'))
    torch.save(D.state_dict(),
               os.path.join(args.name + '_results', 'discriminator_param.pkl'))
    with open(os.path.join(args.name + '_results', 'train_hist.pkl'),
              'wb') as f:
        pickle.dump(train_hist, f)
示例#24
0
 def test_discriminator_run(self):
   img_batch = tf.zeros([3, 70, 70, 3])
   disc_output = networks.discriminator(img_batch)
   with self.test_session() as sess:
     sess.run(tf.global_variables_initializer())
     sess.run(disc_output)
示例#25
0
def train(model_name, gpu_id):
    params = param.get_general_params()
    network_dir = params['model_save_dir'] + '/' + model_name

    if not os.path.isdir(network_dir):
        os.mkdir(network_dir)

    train_feed = data_generation.create_feed(params, params['data_dir'], 'train')

    os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True

    gan_lr = 1e-4
    disc_lr = 1e-4
    disc_loss = 0.1

    generator = networks.network_posewarp(params)
    generator.load_weights('../models/vgg_100000.h5')

    discriminator = networks.discriminator(params)
    discriminator.compile(loss='binary_crossentropy', optimizer=Adam(lr=disc_lr))

    vgg_model = truncated_vgg.vgg_norm()
    networks.make_trainable(vgg_model, False)
    response_weights = sio.loadmat('../data/vgg_activation_distribution_train.mat')

    gan = networks.gan(generator, discriminator, params)
    gan.compile(optimizer=Adam(lr=gan_lr),
                loss=[networks.vgg_loss(vgg_model, response_weights, 12), 'binary_crossentropy'],
                loss_weights=[1.0, disc_loss])

    n_iters = 10000
    batch_size = params['batch_size']

    for step in range(n_iters):

        x, y = next(train_feed)

        gen = generator.predict(x)

        # Train discriminator
        x_tgt_img_disc = np.concatenate((y, gen))
        x_src_pose_disc = np.concatenate((x[1], x[1]))
        x_tgt_pose_disc = np.concatenate((x[2], x[2]))

        L = np.zeros([2 * batch_size])
        L[0:batch_size] = 1

        inputs = [x_tgt_img_disc, x_src_pose_disc, x_tgt_pose_disc]
        d_loss = discriminator.train_on_batch(inputs, L)

        # Train the discriminator a couple of iterations before starting the gan
        if step < 5:
            util.printProgress(step, 0, [0, d_loss])
            step += 1
            continue

        # TRAIN GAN
        L = np.ones([batch_size])
        x, y = next(train_feed)
        g_loss = gan.train_on_batch(x, [y, L])
        util.printProgress(step, 0, [g_loss[1], d_loss])

        if step % params['model_save_interval'] == 0 and step > 0:
            gan.save(network_dir + '/' + str(step) + '.h5')
示例#26
0
def train(model_name, gpu_id):

    params = param.getGeneralParams()
    gpu = '/gpu:' + str(gpu_id)

    network_dir = params['project_dir'] + '/results/networks/' + model_name

    if not os.path.isdir(network_dir):
        os.mkdir(network_dir)

    train_feed = datageneration.createFeed(params, "train_vids.txt", 50000)
    test_feed = datageneration.createFeed(params, "test_vids.txt", 5000)

    batch_size = params['batch_size']

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True
    set_session(tf.Session(config=config))

    gan_lr = 5e-5
    disc_lr = 5e-5
    disc_loss = 0.1

    vgg_model_num = 184000

    with tf.device(gpu):
        vgg_model = myVGG.vgg_norm()
        networks.make_trainable(vgg_model, False)
        response_weights = sio.loadmat('mean_response.mat')
        generator = networks.network_fgbg(params, vgg_model, response_weights)
        generator.load_weights('../results/networks/fgbg_vgg_new/' +
                               str(vgg_model_num) + '.h5')

        discriminator = networks.discriminator(params)
        discriminator.compile(loss=networks.wass, optimizer=RMSprop(disc_lr))
        gan = networks.gan(generator, discriminator, params, vgg_model,
                           response_weights, disc_loss, gan_lr)

    for step in xrange(vgg_model_num + 1, vgg_model_num + 5001):
        for j in xrange(2):
            for l in discriminator.layers:
                weights = l.get_weights()
                weights = [np.clip(w, -0.01, 0.01) for w in weights]
                l.set_weights(weights)

            X, Y = next(train_feed)

            with tf.device(gpu):
                gen = generator.predict(X)

            #Train discriminator
            networks.make_trainable(discriminator, True)

            X_tgt_img_disc = np.concatenate((Y, gen))
            X_src_pose_disc = np.concatenate((X[1], X[1]))
            X_tgt_pose_disc = np.concatenate((X[2], X[2]))

            L = np.ones(2 * batch_size)
            L[0:batch_size] = -1

            inputs = [X_tgt_img_disc, X_src_pose_disc, X_tgt_pose_disc]
            d_loss = discriminator.train_on_batch(inputs, L)
            networks.make_trainable(discriminator, False)

        #TRAIN GAN
        L = -1 * np.ones(batch_size)
        X, Y = next(train_feed)
        g_loss = gan.train_on_batch(X, [Y, L])
        util.printProgress(step, 0, [g_loss[1], d_loss])

        if (step % params['model_save_interval'] == 0):
            gan.save(network_dir + '/' + str(step) + '.h5')
        '''
示例#27
0
##########################

##########################
# get hand written data  #
print("generating stylization set.")
style_base = "stylization_set/another/"
style_set = get_style_set(style_base)
##########################

print("initializing model.")
NUM_EPOCH = 200  ################
learning_rate = 0.0003

s_enc = styleEncoder().cuda()
dec = Decoder().cuda()
dis = discriminator().cuda()
enc = fontEncoder().cuda()
cla = classifier().cuda()

s_MSE = nn.MSELoss().cuda()
adv_loss = nn.BCELoss().cuda()
cla_loss = nn.CrossEntropyLoss().cuda()
gen_loss = nn.L1Loss().cuda()

D_optimizer = torch.optim.Adam(dis.parameters(), lr=learning_rate)
G_optimizer = torch.optim.Adam(list(s_enc.parameters()) +
                               list(dec.parameters()) +
                               list(enc.parameters()) + list(cla.parameters()),
                               lr=learning_rate)

for epoch in range(NUM_EPOCH):
示例#28
0
def train(model_name, gpu_id):

    params = param.getGeneralParams()
    gpu = '/gpu:' + str(gpu_id)

    network_dir = params['project_dir'] + '/results/networks/' + model_name

    if not os.path.isdir(network_dir):
        os.mkdir(network_dir)

    train_feed = datageneration.createFeed(params, "train_vids.txt")
    test_feed = datageneration.createFeed(params, "test_vids.txt")

    batch_size = params['batch_size']

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True

    with tf.Session(config=config) as sess:

        sess.run(tf.global_variables_initializer())
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)

        gan_lr = 1e-4
        disc_lr = 1e-4
        disc_loss = 0.1

        with tf.device(gpu):
            vgg_model = myVGG.vgg_norm()
            networks.make_trainable(vgg_model, False)
            response_weights = sio.loadmat('mean_response.mat')
            #generator = networks.network_pix2pix(params,vgg_model,response_weights)
            generator = networks.network_fgbg(params)
            generator.load_weights('../results/networks/fgbg_vgg/100000.h5')

            discriminator = networks.discriminator(params)
            discriminator.compile(loss='binary_crossentropy',
                                  optimizer=Adam(lr=disc_lr))
            gan = networks.gan(generator, discriminator, params, vgg_model,
                               response_weights, disc_loss, gan_lr)
            gan.compile(optimizer=Adam(lr=gan_lr),
                        loss=[
                            networks.vggLoss(vgg_model, response_weights),
                            'binary_crossentropy'
                        ],
                        loss_weights=[1.0, disc_loss])

        for step in xrange(10001):

            X, Y = next(train_feed)

            with tf.device(gpu):
                gen = generator.predict(X)  #[0:3])

            #Train discriminator
            X_tgt_img_disc = np.concatenate((Y, gen))
            X_src_pose_disc = np.concatenate((X[1], X[1]))
            X_tgt_pose_disc = np.concatenate((X[2], X[2]))

            L = np.zeros([2 * batch_size])
            L[0:batch_size] = 1

            inputs = [X_tgt_img_disc, X_src_pose_disc, X_tgt_pose_disc]
            d_loss = discriminator.train_on_batch(inputs, L)

            #Train the discriminator a couple of iterations before starting the gan
            if (step < 5):
                util.printProgress(step, 0, [0, d_loss])
                step += 1
                continue

            #TRAIN GAN
            L = np.ones([batch_size])
            X, Y = next(train_feed)
            g_loss = gan.train_on_batch(X, [Y, L])
            util.printProgress(step, 0, [g_loss[1], d_loss])
            '''
			#Test
			if(step % params['test_interval'] == 0):
				n_batches = 8
				test_loss = np.zeros(2)			
				for j in xrange(n_batches):	
					X,Y = next(warp_test_feed)
					#test_loss += np.array(generator.test_on_batch(X_warp,Y_warp))
					L = np.zeros([batch_size,2])
					L[:,1] = 1 #Fake images

					test_loss_j = gan_warp.test_on_batch(X_warp, [Y_warp,L])
					test_loss += np.array(test_loss_j[1:3])
	
				test_loss /= (n_batches)
				util.printProgress(step,1,test_loss)
			'''

            if (step % params['model_save_interval'] == 0 and step > 0):
                gan.save(network_dir + '/' + str(step) + '.h5')
示例#29
0
train_loader_B = utils.data_load(os.path.join('data', args.dataset), 'trainB', transform, args.batch_size, shuffle=True, drop_last=True)
test_loader_A = utils.data_load(os.path.join('data', args.dataset), 'testA', transform, 1, shuffle=True, drop_last=True)
test_loader_B = utils.data_load(os.path.join('data', args.dataset), 'testB', transform, 1, shuffle=True, drop_last=True)

print('------------ Datasets -------------')
print('TrainA:', len(train_loader_A))
print('TrainB:', len(train_loader_B))
print('TestA:', len(test_loader_A))
print('TestB:', len(test_loader_B))
print('-------------- End ----------------')
# network
En_A = networks.encoder(in_nc=args.in_ngc, nf=args.ngf, img_size=args.img_size).to(device)
En_B = networks.encoder(in_nc=args.in_ngc, nf=args.ngf, img_size=args.img_size).to(device)
De_A = networks.decoder(out_nc=args.out_ngc, nf=args.ngf).to(device)
De_B = networks.decoder(out_nc=args.out_ngc, nf=args.ngf).to(device)
Disc_A = networks.discriminator(in_nc=args.in_ndc, out_nc=args.out_ndc, nf=args.ndf, img_size=args.img_size).to(device)
Disc_B = networks.discriminator(in_nc=args.in_ndc, out_nc=args.out_ndc, nf=args.ndf, img_size=args.img_size).to(device)
En_A.train()
En_B.train()
De_A.train()
De_B.train()
Disc_A.train()
Disc_B.train()
print('---------- Networks initialized -------------')
utils.print_network(En_A)
utils.print_network(En_B)
utils.print_network(De_A)
utils.print_network(De_B)
utils.print_network(Disc_A)
utils.print_network(Disc_B)
print('-----------------------------------------------')
示例#30
0
def train(dataset, gpu_id):

    params = param.getGeneralParams()
    gpu = '/gpu:' + str(gpu_id)

    lift_params = param.getDatasetParams('weightlifting')
    golf_params = param.getDatasetParams('golfswinghd')
    workout_params = param.getDatasetParams('workout')
    tennis_params = param.getDatasetParams('tennis')
    aux_params = param.getDatasetParams('test-aux')

    _, lift_test = datareader.makeWarpExampleList(lift_params, 0, 2000, 2, 1)
    _, golf_test = datareader.makeWarpExampleList(golf_params, 0, 5000, 2, 2)
    _, workout_test = datareader.makeWarpExampleList(workout_params, 0, 2000,
                                                     2, 3)
    _, tennis_test = datareader.makeWarpExampleList(tennis_params, 0, 2000, 2,
                                                    4)
    _, aux_test = datareader.makeWarpExampleList(aux_params, 0, 2000, 2, 5)

    test = lift_test + golf_test + workout_test + tennis_test + aux_test
    feed = datageneration.warpExampleGenerator(test,
                                               params,
                                               do_augment=False,
                                               draw_skeleton=False,
                                               skel_color=(0, 0, 255),
                                               return_pose_vectors=True)

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True

    with tf.Session(config=config) as sess:

        sess.run(tf.global_variables_initializer())
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)

        with tf.device(gpu):
            vgg_model = myVGG.vgg_norm()
            networks.make_trainable(vgg_model, False)
            response_weights = sio.loadmat('mean_response.mat')

            gen = networks.network_fgbg(params,
                                        vgg_model,
                                        response_weights,
                                        True,
                                        loss='vgg')
            disc = networks.discriminator(params)
            gan = networks.gan(gen, disc, params, vgg_model, response_weights,
                               0.01, 1e-4)
            gan.load_weights('../results/networks/gan/10000.h5')

        np.random.seed(17)
        n_batches = 25
        for j in xrange(n_batches):
            print j
            X, Y = next(feed)
            loss = gen.evaluate(X[0:-2], Y)
            pred = gen.predict(X[0:-2])

            sio.savemat(
                'results/outputs/' + str(j) + '.mat', {
                    'X': X[0],
                    'Y': Y,
                    'pred': pred,
                    'loss': loss,
                    'src_pose': X[-2],
                    'tgt_pose': X[-1]
                })
示例#31
0
                       map_location=lambda storage, loc: storage,
                       strict=False))

if args.G_pre_trained_weight != '':
    print("loaded G_e weight!")
    if torch.cuda.is_available():
        G_e.load_state_dict(torch.load(args.G_pre_trained_weight,
                                       strict=False))
    else:
        # cpu mode
        G_e.load_state_dict(
            torch.load(args.G_pre_trained_weight,
                       map_location=lambda storage, loc: storage,
                       strict=False))
d = networks.TransformerDecoder()
D = networks.discriminator(args.in_ndc, args.out_ndc, args.ndf)

d1 = networks.TransformerDecoder()
D1 = networks.discriminator(args.in_ndc, args.out_ndc, args.ndf)

d2 = networks.TransformerDecoder()
D2 = networks.discriminator(args.in_ndc, args.out_ndc, args.ndf)

d3 = networks.TransformerDecoder()
D3 = networks.discriminator(args.in_ndc, args.out_ndc, args.ndf)

if args.latest_discriminator_model != '':
    if torch.cuda.is_available():
        d.load_state_dict(torch.load(args.latest_generator_model,
                                     strict=False))
        D.load_state_dict(torch.load(args.latest_discriminator_model))
示例#32
0
def main(num_epochs=500, configs=configs):
    # https://gist.github.com/f0k/738fa2eedd9666b78404ed1751336f56
    # Prepare Theano variables for inputs. We don't need targets as we'll set them manually
    C_in = T.tensor4('inputs')
    G_in = T.matrix('random')

    # Load the data
    (X_train, y_train, X_test, y_test, X_val, y_val) = load_mnist()

    # Classifier
    C_network = discriminator(C_in, configs=configs)
    C_out = lasagne.layers.get_output(C_network)
    C_params = lasagne.layers.get_all_params(C_network, trainable=True)

    # Define the synthesiser function (that tries to create 'real' images)
    G_network = synthesiser(G_in, configs=configs)
    G_params = lasagne.layers.get_all_params(G_network, trainable=True)

    real_out = lasagne.layers.get_output(C_network)
    # fake_out, second arg in get_output is optional inputs to pass through to C_network
    fake_out = lasagne.layers.get_output(
        C_network, lasagne.layers.get_output(G_network, deterministic=True))

    # Define the objective, updates, and training functions
    # Cost = Fakes are class=1, so for generator target is for all to be identified as real (0)
    #    eps = 1e-10
    #    alfa = 1-1e-5
    alfa = 1
    eps = 0
    G_obj = lasagne.objectives.binary_crossentropy((fake_out + eps) * alfa,
                                                   1).mean()
    # Cost = Discriminator needs real = 0, and identify fakes as 1
    C_obj = lasagne.objectives.binary_crossentropy((real_out+eps)*alfa, 1).mean()+\
        lasagne.objectives.binary_crossentropy((fake_out+eps)*alfa, 0).mean()

    train_fn = {}
    C_updates = lasagne.updates.adam(C_obj,
                                     C_params,
                                     learning_rate=2e-4,
                                     beta1=0.5)
    G_updates = lasagne.updates.adam(G_obj,
                                     G_params,
                                     learning_rate=2e-4,
                                     beta1=0.5)

    train_fn['discriminator'] = theano.function([C_in, G_in],
                                                C_obj,
                                                updates=C_updates,
                                                name='C_training')
    train_fn['generator'] = theano.function([G_in],
                                            G_obj,
                                            updates=G_updates,
                                            name='G_training')

    # Create the theano functions
    classify = theano.function([C_in], C_out)
    generate = theano.function([G_in],
                               lasagne.layers.get_output(G_network,
                                                         deterministic=True))

    # The test prediction is running the discriminator deterministically. All the validation set are
    # real, so the cost is when identifiying as fake (1)
    test_prediction = lasagne.layers.get_output(C_network, deterministic=True)
    test_loss = lasagne.objectives.binary_crossentropy(test_prediction, 1)
    test_loss = test_loss.mean()
    test_acc = T.mean(test_prediction > 0.5, dtype=theano.config.floatX)

    # Loss is from the perspective of the discriminator, so the target is for all values to be labelled true (0)
    test_generator = lasagne.layers.get_output(C_network,
                                               lasagne.layers.get_output(
                                                   G_network,
                                                   deterministic=True),
                                               deterministic=True)
    test_loss_gen = lasagne.objectives.binary_crossentropy(test_generator,
                                                           0).mean()
    test_acc_gen = T.mean(test_generator < 0.5, dtype=theano.config.floatX)

    # Compile the training and validation functions
    val_fn = theano.function([C_in], [test_loss, test_acc])
    val_gen_fn = theano.function([G_in], [test_loss_gen, test_acc_gen])
    #    pdb.set_trace()
    # Run
    lossplots = run(X_train,
                    y_train,
                    X_test,
                    y_test,
                    X_val,
                    y_val,
                    num_epochs,
                    train_fn,
                    val_fn,
                    val_gen_fn,
                    G_params,
                    generate,
                    configs=configs)

    networks = {}
    networks['generator'] = G_network
    networks['discriminator'] = C_network

    return generate, networks, lossplots
示例#33
0
        transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
train_loader_src = utils.data_load(os.path.join('data', args.src_data), 'train', src_transform, args.batch_size, shuffle=True, drop_last=True)
train_loader_tgt = utils.data_load(os.path.join('data', args.tgt_data), 'pair', tgt_transform, args.batch_size, shuffle=True, drop_last=True)
test_loader_src = utils.data_load(os.path.join('data', args.src_data), 'test', src_transform, 1, shuffle=True, drop_last=True)

# network
G = networks.generator(args.in_ngc, args.out_ngc, args.ngf, args.nb)
if args.latest_generator_model != '':
    if torch.cuda.is_available():
        G.load_state_dict(torch.load(args.latest_generator_model))
    else:
        # cpu mode
        G.load_state_dict(torch.load(args.latest_generator_model, map_location=lambda storage, loc: storage))

D = networks.discriminator(args.in_ndc, args.out_ndc, args.ndf)
if args.latest_discriminator_model != '':
    if torch.cuda.is_available():
        D.load_state_dict(torch.load(args.latest_discriminator_model))
    else:
        D.load_state_dict(torch.load(args.latest_discriminator_model, map_location=lambda storage, loc: storage))
VGG = networks.VGG19(init_weights=args.vgg_model, feature_mode=True)
G.to(device)
D.to(device)
VGG.to(device)
G.train()
D.train()
VGG.eval()
print('---------- Networks initialized -------------')
utils.print_network(G)
utils.print_network(D)
示例#34
0
writer4.start()
writer5.start()
writer6.start()
#writer7.start()
#writer8.start()
#
gen = generator(target_size[0],
                target_size[1],
                1024,
                noise_dim,
                n_labels,
                target_size[2],
                tanh=True)
disc = discriminator(target_size[0],
                     target_size[1],
                     512,
                     n_labels,
                     target_size[2],
                     wgan=True)
opt = Adam(0.0002, 0.5)
disc.compile(loss=['binary_crossentropy', null_loss()],
             optimizer=opt,
             metrics=['accuracy'])
frozen_disc = Model(inputs=disc.inputs, outputs=disc.outputs)
frozen_disc.trainable = False
adv = Model(inputs=gen.input, outputs=frozen_disc(gen.output))
adv.compile(loss=['binary_crossentropy', null_loss()],
            optimizer=opt,
            metrics=['accuracy'])
for repeat in range(8):
    plt.ion()
    plt.figure(figsize=(10, 10))
示例#35
0
 def test_discriminator_invalid_input(self):
   with self.assertRaisesRegexp(ValueError, 'Shape must be rank 4'):
     networks.discriminator(tf.zeros([28, 28, 3]))