示例#1
0
def test(net: Network, test_loader: torch.utils.data.DataLoader):
    net.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for x, y in test_loader:
            x = x.to(net.device)
            y = y.to(net.device)
            pred = net(x.view(-1, 28 * 28))
            test_loss += F.nll_loss(pred, y, size_average=False).item()
            correct += torch.eq(pred.max(1).indices, y).sum().item()

        test_loss /= len(test_loader.dataset)
        print(
            f"\nTest set, Average loss: {test_loss}, Accuracy: {float(correct) / float(len(test_loader.dataset))}\n"
        )

device = "cuda" if torch.cuda.is_available() else "cpu" # Configure device
print('GPU USED?',torch.cuda.is_available())

################# MODELS#####################

models =[]
optimizers =[]
criterions =[]
j = 0
for i in range(len_class):
    for event in events:
            model = Network(output_dim=numb_class[i])
            model = model.to(device)
            model.eval()
            models.append(model)
            weights_list[j] = weights_list[j].to(device)
            criterions.append(nn.CrossEntropyLoss(weight=weights_list[j]))
            optimizers.append(optim.Adam(model.parameters(), lr=LEARNING_RATE, weight_decay=WEIGHT_DECAY))
            del model
            j +=1


#### MODE-SPECIFIC CLASSIFIER SCHEME
# 1 : LW, 2:RA, 3:RD, 4:SA, 5:SD, 6:Stand
# MODEL1: LW(1)-> LW(1), RA(2), RD(3), SA(4), SD(5), Stand(6)
# MODEL2: RA(2)-> LW(1), RA(2)
# MODEL3: RD(3)-> LW(1), RD(3)
# MODEL4: SA(4)-> LW(1), SA(4)
# MODEL5: SD(5)-> LW(1), SD(5)
示例#3
0
        tmp_dict["id"].append(batch_id)
        tmp_dict["epsilon"].append(epsilon)
        tmp_dict["y"].append(y.item())
        tmp_dict["y_"].append(y_)

    return pandas.DataFrame.from_dict(tmp_dict), pertubed_images, pertubation


if __name__ == "__main__":
    config = Configuration()

    net = Network()
    net.load_model()

    net.eval()

    test_loader = get_test_loader(batch_size=1, shuffle=False)

    result = []
    for batch_id, (x, y) in enumerate(test_loader):
        df, _ = run_attack(net, x, y, config.epsilons, batch_id)
        result.append(df)

        if batch_id % 100 == 0:
            print(f"Step {batch_id}/{len(test_loader.dataset)}")

    result_df = pandas.concat(result)  # type: pandas.DataFrame
    result_df.reset_index(inplace=True, drop=True)

    result_path = Path("data/")