示例#1
0
 def get_next_direction(self, start, goal):
     self.start = start
     self.goal = goal
     graph = self.create_graph(self.game_map)
     path = astar_path(graph, start, goal)
     direction = self.convert_node_to_direction(path)
     return direction
示例#2
0
    def path_between(self, pointA, pointB, avoid_bots=True):
        start = self.pathfinder.start = pointA
        goal = self.pathfinder.goal = pointB
        game_map = self.pathfinder.parse_game_state(self.game_state)
        graph = self.pathfinder.create_graph(game_map, avoid_bots=avoid_bots)
        path = astar_path(graph, start, goal, self.manhattan_distance)

        return path
def optimalPath(source, target, passcode, part2=False):
    sourceState = (source, '')
    targetState = (target, '')
    manhattan = lambda c1, c2: abs(c1[0][0] - c2[0][0]) + abs(c1[0][1] - c2[0][
        1])

    if part2:
        # Infinite targetWeight repels longest path from target node
        inf = sys.maxsize
        SV = SecureVault(passcode,
                         targetState,
                         defaultWeight=-1,
                         targetWeight=inf)
        path = astar_path(SV, sourceState, targetState, heuristic=manhattan)
    else:
        SV = SecureVault(passcode, targetState)
        path = astar_path(SV, sourceState, targetState, heuristic=None)

    route = path[-2][1]
    return len(route) if part2 else route
示例#4
0
    def get_next_direction(self, start, goal):
        self.pathfinder.start = start
        self.pathfinder.goal = goal
        graph = self.pathfinder.create_graph(self.pathfinder.game_map)
        direction = None
        try:
            path = astar_path(graph, start, goal, weight='cost')
            direction = self.pathfinder.convert_node_to_direction(path)
        except Exception:
            pass

        return direction
def shortestPathLength(source, target, seed, part2=False):
    PT = PathTimer()
    CM = CubicleMaze(seed)
    cutoff = sum(target)

    if part2:
        paths = single_source_shortest_path(CM, source, cutoff=cutoff)
        path = paths.keys()
    else:
        manhattan = lambda c1, c2: abs(c1[0] - c2[0]) + abs(c1[1] - c2[1])
        path = astar_path(CM,
                          source,
                          target,
                          heuristic=manhattan,
                          weight="weight")

    CM.plotPath(cutoff, cutoff, path)
    return len(path) if part2 else len(path) - 1
    def get_nearest_material_deposit(self, prefer_unvisited=False):
        possible_goals = []
        for material in self.materials:
            if not self.materials[material]['visited'] or not prefer_unvisited:
                possible_goals.append(material)

        if not possible_goals and prefer_unvisited:
            return self.get_nearest_material_deposit()

        nearest = None
        for possible in possible_goals:
            start = self.pathfinder.start = self.character_state['location']
            goal = self.pathfinder.goal = possible
            game_map = self.pathfinder.parse_game_state(self.game_state)
            graph = self.pathfinder.create_graph(game_map)
            path = astar_path(graph, start, goal, self.manhattan_distance)

            if nearest is None or len(path) < nearest[0]:
                nearest = (len(path), possible)

        return nearest[1]
def shortestPath(instructions, part2=False, bidirectional=False):
    timer = PathTimer()
    
    RTF = RadioisotopeTestingFacility()
    source = getSourceState(instructions)
    if part2:
        # New items on floor 1:
        # An elerium generator, an elerium-compatible microchip,
        # a dilithium generator, a dilithium-compatible microchip.
        source.chips[0].update({'E', 'D'})
        source.gens[0].update({'E', 'D'})
    target = getTargetState(source)
    
    if bidirectional:
        # Ye olde bidirectional search (slow)
        path = bidirectional_shortest_path(RTF, source, target)
    else:
        path = astar_path(RTF, source, target, heuristic=levelRise, weight="weight")
    for index, state in enumerate(path):
        print(index, state)

    return path
示例#8
0
 def find_path(self, source, target, graph='land'):
     from networkx.algorithms.shortest_paths import astar_path
     return astar_path(
             self.graphs[graph], source, target, self.a_star_heuristic)