示例#1
0
    def test_dot_graph_load(self):
        # get the graph
        data_dir = os.path.join(self.data_dir, "audiology.txt")
        df = pd.read_table(data_dir, sep="\t")
        dot_str = self.pc_util.algo_fges_discrete(df)

        graph = nx_agraph.from_agraph(pygraphviz.AGraph(dot_str))
        self.assertTrue(graph is not None, "Nx did not load graph data.")
示例#2
0
def get_networkx_graph_from_pygraphviz_graph():
    '''It's annoying that NetworkX Graph objects only have a string representation based on the <Graph>.graph['name'] attribute'''
    g = nx.Graph([(1, 2), (7, 8), (2, 8)])
    g.graph['name'] = 'bar'
    pygraphviz_graph = nx_agraph.to_agraph(g)
    networkx_graph = nx_agraph.from_agraph(pygraphviz_graph)
    print(type(networkx_graph)) # <class 'networkx.classes.graph.Graph'>
    print(networkx_graph) # bar
    print(networkx_graph.edges()) # [('1', '2'), ('2', '8'), ('7', '8')]
def regex2dfa(reg_ex, letter='q'):
    transfer_file = tempfile.NamedTemporaryFile(mode='w+')
    command = 'java -jar {}/regex2dfa.jar "{}" {}'.format(
        JAR_DIR, reg_ex, transfer_file.name)
    os.system(command)

    with open(transfer_file.name) as fname:
        dot = fname.read()
        print(dot, file=open('{}.dot'.format(transfer_file.name), 'w'))
    return nx_agraph.from_agraph(pygraphviz.AGraph(dot))
示例#4
0
def read_graph(dot_string, is_directed, is_weighted):
    '''
    Reads the input network in networkx.
    '''
    G = nx_agraph.from_agraph(pygraphviz.AGraph(dot_string))
    for source, target in G.edges():
        for key in G[source][target].keys():
            G[source][target][key]['weight'] = 1

    if not is_directed:
        G = G.to_undirected()

    return G
    def to_dfa(self, regex):
        response = requests.get('{}/{}/{}/{}/'.format(self._URL, self._service,
                                                      self._letter, regex))

        dot = response.json()['dfaInDot']
        dfa = nx_agraph.from_agraph(pygraphviz.AGraph(dot))

        accept_states = [
            n for n in dfa.nodes()
            if dfa.nodes.data('shape')[n] == 'doublecircle'
        ]

        dfa_triple = collections.namedtuple('DFA', ['dot', 'start', 'accepts'])

        return dfa_triple(dfa, self._initial, accept_states)
示例#6
0
    def __init__(self, regex, letter='q'):
        self.regex = regex
        self._f = tempfile.NamedTemporaryFile(mode='w+')
        command = 'java -jar src/java-lib/regex2dfa.jar "{}" {}'.format(
            regex, self._f.name)
        os.system(command)

        with open(self._f.name) as fname:
            dot = fname.read()
            print(dot, file=open('{}.dot'.format(self._f.name), 'w'))

        self._dfa = nx_agraph.from_agraph(pygraphviz.AGraph(dot))
        self._accept_states = [
            n for n in self._dfa.nodes()
            if self._dfa.nodes.data('shape')[n] == 'doublecircle'
        ]
        self._states = [n for n in self._dfa.nodes()]
示例#7
0
    def __call__(self, graph_data: str,
                 number_input_symbols: int = None,
                 graph_data_format: str = 'dot_string') -> FDFA:
        """
        Returns an initialized FDFA instance given the graph_data

        graph_data and graph_data_format must match

        :param      graph_data:            The string containing graph data.
                                           Could be a filename or just the raw
                                           data
        :param      number_input_symbols:  The number of input symbols to the
                                           FDFA needed to compute the correct
                                           frequency flows in the case of
                                           cycles.
                                           Only really optional when using a
                                           graph_data_format
                                           that already has this information.
        :param      graph_data_format:     The graph data file format.
                                           {'dot_file', 'dot_string',
                                            'learning_interface'}

        :returns:   instance of an initialized FDFA object

        :raises     ValueError:            checks if graph_data and
                                           graph_data_format have a compatible
                                           data loader.
        :raises     ValueError:            checks, based on graph_data_format,
                                           whether it is legal to not specify
                                           the number_input_symbols.
        """

        has_number_input_symbols = number_input_symbols is not None
        if graph_data_format == 'dot_string':
            graph = nx_agraph.from_agraph(pygraphviz.AGraph(string=graph_data))
        elif graph_data_format == 'dot_file':
            graph = read_dot(graph_data)
        elif graph_data_format == 'learning_interface':
            learning_interface = graph_data
            graph = read_dot(learning_interface.learned_model_filepath)
            number_input_symbols = learning_interface.num_training_examples
            has_number_input_symbols = True
        else:
            msg = 'graph_data_format ({}) must be one of: "dot_file", ' + \
                  '"dot_string"'.format(graph_data_format)
            raise ValueError(msg)

        if not has_number_input_symbols:
            msg = f'must provide the number_input_symbols to load a FDFA'
            raise ValueError(msg)

        # these are not things that are a part of flexfringe's automaton
        # data model, so give them default values
        final_transition_sym = DEFAULT_FINAL_TRANS_SYMBOL
        empty_transition_sym = DEFAULT_EMPTY_TRANS_SYMBOL
        config_data = FDFA.load_flexfringe_data(graph,
                                                number_input_symbols,
                                                final_transition_sym,
                                                empty_transition_sym)
        config_data['final_transition_sym'] = final_transition_sym
        config_data['empty_transition_sym'] = empty_transition_sym

        nodes_have_changed = (self.nodes != config_data['nodes'])
        edges_have_changed = (self.edges != config_data['edges'])
        no_instance_loaded_yet = (self._instance is None)

        if no_instance_loaded_yet or nodes_have_changed or edges_have_changed:

            # saving these so we can just return initialized instances if the
            # underlying data has not changed
            self.nodes = config_data['nodes']
            self.edges = config_data['edges']

            self._instance = FDFA(**config_data)

        return self._instance
示例#8
0
dotFileExtensions = ['.dot', '.gv']
dataFileName = 'data.json'

if len(sys.argv) == 3:
    dotFolderPath = os.path.abspath(sys.argv[1])
    jsonFolderPath = os.path.abspath(sys.argv[2])
    if not os.path.exists(jsonFolderPath):
        os.mkdir(jsonFolderPath)
    dotFiles = filesWithExtensions(dotFolderPath, dotFileExtensions)
    counter = 0
    for dotFile in dotFiles:
        dotFilePath = dotFolderPath + '/' + dotFile
        try:
            dot_graph = pgv.AGraph(dotFilePath)
            graph_netx = from_agraph(dot_graph)
        except (ValueError, DotError) as e:
            try:
                graph_netx = read_dot(dotFilePath)
            except (ValueError, DotError) as f:
                print(dotFile + ' not in graphviz format')
                continue

        graph_json = json_graph.node_link_data(graph_netx)  #dot_graph)
        filename = dotFile[:dotFile.rfind('.')]
        json.dump(graph_json,
                  open(jsonFolderPath + '/' + filename + '.json', 'w'),
                  indent=2)
        print(filename + '.json converted')
        counter += 1
    with open(dataFileName, 'w') as jsonFile:
示例#9
0
def main():

    parser = argparse.ArgumentParser(
        description=
        'Simulate run of routing strategies\n\n python RL.py <EPISODES> <GAMMA> <EPOCH> <BATCHSIZE> <BUFFER> <TOPOLOGY> <TSIM> <ROUTING> \n \n === topologies options === \n [3cycle] \n [4cycle] \n [4diag] \n [6s4hMultiSwitch] \n [Aarnet] \n [Abilene] \n \n === routing options ===\n[-rl] \t\t run reinforcement learning \n[-so]  \t\t run semi-oblivious \n[-ecmp]  \t run ecmp \n[-ospf]  \t run ospf',
        formatter_class=RawTextHelpFormatter)

    parser.add_argument(
        'episodes',
        type=int,
        help='Number of episodes to train the Reinforcement Learning algorith')
    parser.add_argument('gamma', type=float, help='Discount factor')
    parser.add_argument('epochs', type=int, help='Number of epochs')
    parser.add_argument('batchSize',
                        type=int,
                        help='batch size of the Experience Replay buffer')
    parser.add_argument(
        'buffer',
        type=int,
        help='size of the replay buffer (for the Experience Replay)')
    parser.add_argument('topology', type=str, help='Simulation topology')
    parser.add_argument('simTime', type=int, help='Simulation Time')
    parser.add_argument('routing', type=str, help='Routing protocol')

    args = parser.parse_args()

    if args.gamma > 1 or args.gamma < 0:
        parser.error("gamma cannot be larger than 1 and smaller than 0")

    parameters = [
        args.episodes, args.gamma, args.epochs, args.batchSize, args.buffer,
        args.routing, args.simTime
    ]
    print('parameters', parameters)

    initialnFlow = 3  #10 #maximum number of flows that can coexist in the system (for the training)
    #    RL1 = ReinforcementLearning(initialnFlow, 0)
    #    model, nNode, points_list, bandwidth_list, delay_list = RL1.training(parameters)
    dotFormat = './topologies/' + args.topology + '.dot'
    G = nx_agraph.from_agraph(pygraphviz.AGraph(dotFormat))
    #    pos = nx.spring_layout(G)
    #    nx.draw_networkx_nodes(G,pos)
    #    nx.draw_networkx_edges(G,pos)
    #    nx.draw_networkx_labels(G,pos)
    labels = nx.get_edge_attributes(G, 'weight')

    #topology parameters
    node_name = nx.get_node_attributes(G, 'type')
    print('lables', node_name)
    nNode = nx.number_of_nodes(G)
    print('nnode', nNode)

    nHost = 0
    print('nodi: ', nNode)
    for attr in node_name:
        #        print('attr', attr)
        if (attr[0] == 'h'):
            nHost += 1
    nSwitch = nNode - nHost
    #    print('nhost, nswitch', nHost, nSwitch)

    #newgraph with nodes' name from 0 to nNode-1
    myG = G

    mapping = {}
    cuonter_h = 1
    cuonter_s = 1

    num_h = 0
    num_s = num_h + nHost
    index = 0
    while index < nNode:
        for n in G.nodes():
            if (n[0] == 's' and n[1:] == str(cuonter_s)):
                mapping[n] = num_s
                cuonter_s += 1
                num_s += 1
                index += 1
            elif (n[0] == 'h' and n[1:] == str(cuonter_h)):
                mapping[n] = num_h
                cuonter_h += 1
                num_h += 1
                index += 1
    myG = nx.relabel_nodes(G, mapping)

    model = None
    RL1 = None
    if args.routing == 'rl':
        #trainig RL!!
        activeFlows = initialnFlow - 1
        RL1 = ReinforcementLearning(initialnFlow, myG, 0)
        model = RL1.training(parameters, nNode, myG, nHost, activeFlows)


#    nx.draw_networkx_edge_labels(G,pos,edge_labels=labels)
#    plt.show()

#save name
#save_path = 'C:/example/'
#name_of_file = raw_input("What is the name of the file: ")
#completeName = os.path.join(save_path, name_of_file+".txt")
#file1 = open(completeName, "w")
#    toFile = raw_input(model)
#    file1.write(toFile)

    GM = GraphManager(nNode)

    #start generation packet and normal simulation

    packetsGen = packetsGeneration(initialnFlow)
    failedRL = packetsGen.generation(GM, nNode, nHost, nSwitch, myG, model,
                                     parameters, RL1, dotFormat)
示例#10
0
def output_graphs(callers, r2):

    # first, generate a supergraph of all nodes for each caller
    for func, func_caller in callers.items():
        logging.info("Func: 0x{:04x} Caller: {}".format(func, func_caller))
        for addr, callee in func_caller.callees.items():
            logging.info("Addr: 0x{:04x} Callee: {}".format(addr, callee))

    for func, func_caller in callers.items():

        func_str = '0x{:04x}'.format(func)

        logging.info("Seeking to address {} in radare.".format(func_str))
        r2.cmd("s {}".format(func_str))
        logging.debug("Current addr: {}".format(
            r2.cmd("s")))  # seek to the address of this func
        logging.info("Creating main caller JSON, Disassembly")
        r2.cmd('af-')  # clean analysis data
        r2.cmd('aa')
        #r2.cmd('af')
        #r2.cmd('sp')
        func_caller.json = r2.cmd('agdj')  # pull JSON disassembly from R2
        func_caller.dot = r2.cmd('agd')  # pull dot for function from R2

        func_caller.graph = nx_agraph.from_agraph(
            pygraphviz.AGraph(func_caller.dot))  # pull graph into networkx

        new_path = '{}-{}'.format(func_str, func_caller.count)

        if not os.path.exists(new_path):
            os.makedirs(new_path)
        if not os.curdir == new_path:
            os.chdir(new_path)

        proc_string = "gvpack -o {}/{}_master.dot {}/{}.dot".format(
            new_path, func_str, new_path, func_str)

        #logging.debug("Path object for CALLER: {}".format(new_path))
        f1 = open("{}.json".format(func_str), "w")
        f2 = open("{}.dot".format(func_str), "w")
        f1.write(func_caller.json)
        f2.write(func_caller.dot)
        f1.close()
        f2.close()

        for addr, callee in func_caller.callees.items():

            try:
                addr_str = str('0x{:04x}'.format(callee.dest_addr))
            except ValueError:
                addr_str = str('0x{}'.format(callee.dest_addr))

            r2.cmd("s {}".format(addr_str))
            logging.debug("Current addr: {}".format(
                r2.cmd("s")))  # seek to the address of this func

            r2.cmd('af-')  # clean analysis data
            r2.cmd('aa')
            #r2.cmd('af')
            #r2.cmd('sp') # seek to func identified here

            callee.json = r2.cmd('agdj')
            callee.dot = r2.cmd('agd')

            sub_path = '{}'.format(addr_str)

            callee.graph = nx_agraph.from_agraph(pygraphviz.AGraph(
                callee.dot))  # pull graph into networkx

            if not os.path.exists(sub_path):
                os.makedirs(sub_path)

            os.chdir(sub_path)

            proc_string = proc_string + (" {}/{}/{}.dot".format(
                new_path, '0x{:04x}'.format(addr), sub_path))

            f3 = open("{}.json".format(sub_path), "w")
            f4 = open("{}.dot".format(sub_path), "w")
            check_call([
                'dot', '-Tpng', '-o', "{}.png".format(sub_path),
                "{}.dot".format(sub_path)
            ])

            f3.write(callee.json)
            f4.write(callee.dot)
            #callee.graph = nx_agraph.read_dot(f4)
            #caller.master = nx.compose(func_caller.graph, callee.graph)

            f3.close()
            f4.close()
            os.chdir("..")

        #print proc_string
        #process = subprocess.Popen(proc_string.split(), stdout=subprocess.PIPE)
        #output, error = process.communicate()
        #logging.info(output)
        #logging.debug(error)
        os.chdir("..")

    # print func_caller.dot
    # print func_caller.graph.edges()
    # print func_caller.master.edges()

    cwd = os.getcwd()
    os.chdir(cwd)
    return callers
示例#11
0
def create_graph(binary):
    """
    Adds syscall nodes into the graph generated from the passed in binary and then
    links the syscall nodes to the according nodes that call the syscall

    Args:
        binary (string): file path for the binary

    Returns:
        MultiDiGraph with node format as follows -
            nodename is a string
            node values include 'label' (assembly instructions) and 'shape' = 'record'
    """
    og_name = binary
    with tempfile.TemporaryDirectory() as dirname:
        # get a new binary with dead code removed
        binary = strip_dead_code(binary, dirname)

        # run Radare2 on the binary to get dotfile contents
        radare_pipe = r2pipe.open(binary)
        radare_pipe.cmd('aaaaa')
        radare_pipe.cmd('s main')
        dotContents = radare_pipe.cmd('agfd')
        dot_path = Path(dirname) / f'{binary}.dot'
        with (dot_path).open(mode='w+') as f:
            f.write(dotContents)

        png_path = f'~/graphs/{Path(og_name).name}.png'
        subprocess.run(f'dot -Tpng {dot_path} -o {png_path}',
                       shell=True,
                       check=True)

    graph = from_agraph(pygraphviz.AGraph(dotContents))

    # add syscall nodes
    #for syscall_name in caught_syscalls:
    #    node_name = 'syscall_{}'.format(syscall_name)
    #    graph.add_node(
    #        node_name,
    #        label='syscall {}'.format(syscall_name),
    #        shape='record'
    #    )

    # link syscall nodes to original nodes
    #for node_name, node_info in graph.nodes.items():
    #    # skip over our added syscall nodes
    #    if 'syscall_' in node_name:
    #        continue

    #    instructions = node_info.get('label')

    #    for syscall_name in caught_syscalls:
    #        instr_regex = r"call\s.*sym.imp.{}".format(syscall_name)

    #        if re.search(instr_regex, instructions):
    #            # connect the syscall node to this node
    #            syscall_node_name = 'syscall_{}'.format(syscall_name)
    #            graph.add_edge(
    #                syscall_node_name,
    #                node_name,
    #                weight=10
    #            )

    return graph
示例#12
0
文件: views.py 项目: Lcorvle/gmap
def get_json(request, task_id):
	if request.method == 'GET':
		task = Task.objects.get(id = task_id)
		dot_graph = nx_agraph.from_agraph(pygraphviz.AGraph(task.dot_rep))
  		graph_json = json.dumps(json_graph.node_link_data(dot_graph))
		return HttpResponse(graph_json, content_type='application/json')