示例#1
0
def test_FGW(args):
    """
    Fused Gromov-Wasserstein distance
    """
    args.m = 8
    args.n = 4
    if args.fix_seed:
        torch.manual_seed(0)
    g = nx.stochastic_block_model([4, 4], [[0.9, 0.1], [0.1, 0.9]], seed=8576)
    #components = nx.connected_components(g)
    g.remove_nodes_from(list(nx.isolates(g)))
    args.m = len(g)
    g2 = nx.stochastic_block_model([4, 4], [[0.9, 0.1], [0.1, 0.9]])
    #components = nx.connected_components(g)
    g2.remove_nodes_from(list(nx.isolates(g2)))
    args.n = len(g2)
    gwdist = Fused_Gromov_Wasserstein_distance(alpha=0.8,
                                               features_metric='sqeuclidean')
    graph.graph_dist(args)
    '''
    g = gwGraph.Graph(g)
    g2 = gwGraph.Graph(g2)
    dist = gwdist.graph_d(g,g2)    
    print('GW dist ', dist)
    '''
    pdb.set_trace()
示例#2
0
def synthetic_data_sbm(N=1000):
    """sbm"""
    graphs = []
    graph_labels = []

    import random

    for _ in range(int(N / 2)):
        G = nx.stochastic_block_model(
            [
                random.randint(10, 30),
                random.randint(10, 30),
                random.randint(10, 30)
            ],
            [[0.6, 0.1, 0.1], [0.1, 0.6, 0.1], [0.1, 0.1, 0.6]],
        )
        graphs.append(G)
        graph_labels.append(1)

    for _ in range(int(N / 2)):
        G = nx.stochastic_block_model(
            [random.randint(20, 40),
             random.randint(20, 40)], [[0.6, 0.1], [0.1, 0.6]])
        graphs.append(G)
        graph_labels.append(2)

    return graphs, np.asarray(graph_labels)
示例#3
0
def test_FGW(args):
    """
    Fused Gromov-Wasserstein distance
    """
    import lib.graph as gwGraph
    from lib.ot_distances import Fused_Gromov_Wasserstein_distance
    args.m = 8
    args.n = 4
    if args.fix_seed:
        torch.manual_seed(0)
    #args.Lx = torch.randn(args.m*(args.m-1)//2)  #torch.FloatTensor([[1, -1], [-1, 2]])
    #args.Lx = realize_upper(args.Lx, args.m)
    #pdb.set_trace()    
    g = nx.stochastic_block_model([4,4],[[0.9,0.1],[0.1,0.9]], seed = 8576)
    #components = nx.connected_components(g)
    g.remove_nodes_from(list(nx.isolates(g)))
    args.m = len(g)
    Lx = nx.laplacian_matrix(g, range(args.m)).todense()
    args.Lx = torch.from_numpy(Lx).to(dtype=torch.float32) #+ torch.ones(args.m, args.m)/args.m
    args.n_epochs = 150
    '''
    g2 = nx.stochastic_block_model([4,4],[[0.9,0.1],[0.1,0.9]])    
    g2.remove_nodes_from(list(nx.isolates(g2)))
    args.n = len(g2)
    '''
    loss, P, L = graph.graph_dist(args, plot=False)
    if isinstance(L, torch.Tensor):
        L = L.numpy()
    np.fill_diagonal(L, 0)
    A = -L
    g2 = nx.from_numpy_array(A)
    
    gwdist = Fused_Gromov_Wasserstein_distance(alpha=0.8,features_metric='sqeuclidean')
    g = gwGraph.Graph(g)
    g2 = gwGraph.Graph(g2)    
    dist = gwdist.graph_d(g,g2)    
    print('GW dist ', dist)   

    ###
    g3 = nx.stochastic_block_model([4,4],[[0.9,0.1],[0.1,0.9]],seed=452)    
    g3.remove_nodes_from(list(nx.isolates(g3)))
    args.m = len(g3)
    Lx = nx.laplacian_matrix(g3, range(args.m)).todense()
    args.Lx = torch.from_numpy(Lx).to(dtype=torch.float32) #+ torch.ones(args.m, args.m)/args.m    
    loss2, P2, L2 = graph.graph_dist(args, plot=False)
    L=L2
    if isinstance(L, torch.Tensor):
        L = L.numpy()
    np.fill_diagonal(L, 0)
    A = -L
    g4 = nx.from_numpy_array(A)
    
    #gwdist = Fused_Gromov_Wasserstein_distance(alpha=0.8,features_metric='sqeuclidean')
    g3 = gwGraph.Graph(g3)
    g4 = gwGraph.Graph(g4)    
    dist = gwdist.graph_d(g3,g4)    
    print('GW dist ', dist)   
    
    pdb.set_trace()
示例#4
0
    def set_graph(self, graphtype, graphparams):
        if graphtype == 'hexagonal':
            self.G = nx.triangular_lattice_graph(**graphparams)

        elif graphtype == 'watts strogatz':
            self.G = nx.watts_strogatz_graph(**graphparams)

        elif graphtype == 'newman watts strogatz':
            self.G = nx.newman_watts_strogatz_graph(**graphparams)

        elif graphtype == 'square':
            self.G = nx.grid_2d_graph(**graphparams)

        elif graphtype == 'random blocks':
            self.G = nx.stochastic_block_model(**graphparams)

        elif graphtype == 'powerlaw cluster':
            self.G = nx.powerlaw_cluster_graph(**graphparams)

        elif graphtype == 'scale-free small world':
            self.G = clustered_scalefree(**graphparams)

        elif graphtype == 'barabasi-albert':
            self.G = nx.barabasi_albert_graph(**graphparams)

        else:
            print('Using complete graph')
            self.G = nx.complete_graph(**graphparams)
示例#5
0
def generate_fakeDB():
    """
    Generate fake dataset for testing
    output: graphs - list of graph signal
            labels - list of multi-class label
    """
    #Gen SBM
    sizes = [39255, 39255, 39256]
    probs = [[0.25, 0.05, 0.02],
            [0.05, 0.35, 0.07],
            [0.02, 0.07, 0.40]]
    graph = nx.stochastic_block_model(sizes, probs, seed=0)
    W = nx.adjacency_matrix(graph)
    G = pygsp.graphs.Graph(W)
    W = W.astype(float)
    d = W.sum(axis=0)
    d += np.spacing(np.array(0, W.dtype))
    d = 1.0 / np.sqrt(d)
    D = sparse.diags(d.A.squeeze(), 0)
    I = sparse.identity(d.size, dtype=W.dtype)
    L_norm = I - D*W*D
    L = L_norm.tocoo()
    
    graph_signals = np.random.random([117766, 1921])
    labels = (np.random.random([117766, 23]) > 0.5 )*1

    return graph_signals, labels, L
示例#6
0
def test_graph_generator():
    n = 400
    m = 5
    seed = 0
    # G = nx.barabasi_albert_graph(n, m, seed)
    G = nx.random_partition_graph([100, 100, 200], .25, .01)
    sizes = [10, 90, 300]
    probs = [[0.25, 0.05, 0.02], [0.05, 0.35, 0.07], [0.02, 0.07, 0.40]]
    G = nx.stochastic_block_model(sizes, probs, seed=0)

    G = nx.newman_watts_strogatz_graph(400, 5, 0.5)

    A = nx.to_numpy_array(G)
    print(A)
    plt.pcolormesh(A)
    plt.show()

    s = sorted(G.degree, key=lambda x: x[1], reverse=True)
    # newmap = {s[i][0]:i for i in range(len(s))}
    # H= nx.relabel_nodes(G,newmap)
    # newmap = generate_node_mapping(G, type='community')
    # H = networkX_reorder_nodes(G, newmap)
    H = networkx_reorder_nodes(G, 'community')

    # B = nx.to_numpy_array(H)
    # # plt.pcolormesh(B)
    # plt.imshow(B)
    # plt.show()

    visualize_graph_matrix(H)
示例#7
0
def generate_Connectivity_CP(inter_prob, intra_prob, increment, alpha=0.49):
    cps = [15, 30, 60, 75, 90, 105, 135]
    fname = "CPConnect_" + str(inter_prob) + "_" + str(intra_prob) + "_" + str(
        increment) + "_" + str(alpha) + ".txt"

    sizes_2 = [125, 125, 125, 125]
    probs_2 = construct_SBM_block(sizes_2, inter_prob, intra_prob)

    sizes = sizes_2
    probs = probs_2
    maxt = 150
    G_0 = nx.stochastic_block_model(sizes, probs)
    G_0 = nx.Graph(G_0)
    G_t = G_0
    G_times = []
    G_times.append(G_t)

    for t in range(maxt):
        if (t in cps):
            for i in range(len(probs)):
                for j in range(len(probs[0])):
                    if (probs[i][j] < intra_prob):
                        probs[i][j] = probs[i][j] + increment
            G_t = SBM_snapshot(G_t, alpha, sizes, probs)
            G_times.append(G_t)

        else:
            G_t = SBM_snapshot(G_t, alpha, sizes, probs)
            G_times.append(G_t)
            print("generating " + str(t), end="\r")

    #write the entire history of snapshots
    to_edgelist(G_times, fname)
示例#8
0
def create_test_graphs(n,
                       block_sizes=[],
                       block_prob=[],
                       graph_type='inv_cov',
                       seed_nb=123):
    if graph_type == 'inv_cov':
        l1 = sklearn.datasets.make_spd_matrix(n)
    elif graph_type == 'cov':
        l1 = sklearn.datasets.make_spd_matrix(n)
        l1 = lg.inv(l1)
    else:
        if graph_type == 'geo':
            g1 = nx.random_geometric_graph(n, 0.55)
        if graph_type == 'er':
            g1 = nx.erdos_renyi_graph(n, 0.45)
        if graph_type == 'sbm':
            g1 = nx.stochastic_block_model(block_sizes,
                                           block_prob,
                                           seed=seed_nb)
        g1.remove_nodes_from(list(nx.isolates(g1)))
        n = len(g1)
        l1 = nx.laplacian_matrix(g1, range(n))
        l1 = np.array(l1.todense())

    # Permutation and second graph
    l2, P_true = create_permutation(n, l1, seed_nb)
    x = np.double(l1)
    y = l2
    return [x, y, P_true]
def create_sbm():
    """simple test"""
    # set a simple SBM model
    sizes = [15, 35, 25]
    probs = [[0.7, 0.08, 0.10], [0.08, 0.8, 0.02], [0.10, 0.02, 0.80]]

    graph = nx.stochastic_block_model(sizes, probs, seed=0)

    # need to set the weights to 1
    for i, j in graph.edges():
        graph[i][j]["weight"] = 1

    # ground truth
    community_labels = [graph.nodes[i]["block"] for i in graph]

    # spring layout
    pos = nx.spring_layout(graph, weight=None, scale=1)
    for u in graph:
        graph.nodes[u]["pos"] = pos[u]

    # draw the graph with ground truth
    plt.figure(figsize=(5, 4))
    nx.draw(graph, pos=pos, node_color=community_labels)
    plt.title("Ground truth communities")
    plt.savefig("ground_truth.png", bbox_inches="tight")

    with open("sbm_graph.pkl", "wb") as pickle_file:
        pickle.dump(nx.adjacency_matrix(graph, weight="weight"), pickle_file)

    nx.write_gpickle(graph, "sbm_graph.gpickle")
示例#10
0
    def process(self):
        # Read data into huge `Data` list.
        data_list = []
        for i in range(self.num_samples):

            y = np.random.randint(len(self.targets))
            probs = [
                [self.in_probs[0], self.targets[y]],
                [self.targets[y], self.in_probs[1]],
            ]
            block_sizes = self.sizes[np.random.randint(len(self.sizes))]
            G = nx.stochastic_block_model(block_sizes, probs, seed=i + 1)
            x = torch.zeros((sum(block_sizes), self.n_features))

            for i, partition in enumerate(G.graph["partition"]):
                partition = np.array(list(partition))
                feat = np.random.choice(self.n_features,
                                        len(partition),
                                        p=self.feat_probs[i])
                x[partition, feat] = 1

            data = from_networkx(G)
            data["x"] = x.float()
            data["y"] = torch.tensor([y])
            data_list.append(data)

        if self.pre_filter is not None:
            data_list = [data for data in data_list if self.pre_filter(data)]

        if self.pre_transform is not None:
            data_list = [self.pre_transform(data) for data in data_list]

        data, slices = self.collate(data_list)
        torch.save((data, slices), self.processed_paths[0])
示例#11
0
def test_stochastic_block_model():
    sizes = [75, 75, 300]
    probs = [[0.25, 0.05, 0.02],
             [0.05, 0.35, 0.07],
             [0.02, 0.07, 0.40]]
    G = nx.stochastic_block_model(sizes, probs, seed=0)
    C = G.graph['partition']
    assert_equal(len(C), 3)
    assert_equal(len(G), 450)
    assert_equal(G.size(), 22160)

    GG = nx.stochastic_block_model(sizes, probs, range(450), seed=0)
    assert_equal(G.nodes, GG.nodes)

    # Test Exceptions
    sbm = nx.stochastic_block_model
    badnodelist = list(range(400))  # not enough nodes to match sizes
    badprobs1 = [[0.25, 0.05, 1.02],
                 [0.05, 0.35, 0.07],
                 [0.02, 0.07, 0.40]]
    badprobs2 = [[0.25, 0.05, 0.02],
                 [0.05, -0.35, 0.07],
                 [0.02, 0.07, 0.40]]
    probs_rect1 = [[0.25, 0.05, 0.02],
                   [0.05, -0.35, 0.07]]
    probs_rect2 = [[0.25, 0.05],
                   [0.05, -0.35],
                   [0.02, 0.07]]
    asymprobs = [[0.25, 0.05, 0.01],
                 [0.05, -0.35, 0.07],
                 [0.02, 0.07, 0.40]]
    assert_raises(nx.NetworkXException, sbm, sizes, badprobs1)
    assert_raises(nx.NetworkXException, sbm, sizes, badprobs2)
    assert_raises(nx.NetworkXException, sbm, sizes, probs_rect1, directed=True)
    assert_raises(nx.NetworkXException, sbm, sizes, probs_rect2, directed=True)
    assert_raises(nx.NetworkXException, sbm, sizes, asymprobs, directed=False)
    assert_raises(nx.NetworkXException, sbm, sizes, probs, badnodelist)
    nodelist = [0] + list(range(449))  # repeated node name in nodelist
    assert_raises(nx.NetworkXException, sbm, sizes, probs, nodelist)

    # Extra keyword arguments test
    GG = nx.stochastic_block_model(sizes, probs, seed=0, selfloops=True)
    assert_equal(G.nodes, GG.nodes)
    GG = nx.stochastic_block_model(sizes, probs, selfloops=True, directed=True)
    assert_equal(G.nodes, GG.nodes)
    GG = nx.stochastic_block_model(sizes, probs, seed=0, sparse=False)
    assert_equal(G.nodes, GG.nodes)
示例#12
0
def test_stochastic_block_model():
    sizes = [75, 75, 300]
    probs = [[0.25, 0.05, 0.02],
             [0.05, 0.35, 0.07],
             [0.02, 0.07, 0.40]]
    G = nx.stochastic_block_model(sizes, probs, seed=0)
    C = G.graph['partition']
    assert len(C) == 3
    assert len(G) == 450
    assert G.size() == 22160

    GG = nx.stochastic_block_model(sizes, probs, range(450), seed=0)
    assert G.nodes == GG.nodes

    # Test Exceptions
    sbm = nx.stochastic_block_model
    badnodelist = list(range(400))  # not enough nodes to match sizes
    badprobs1 = [[0.25, 0.05, 1.02],
                 [0.05, 0.35, 0.07],
                 [0.02, 0.07, 0.40]]
    badprobs2 = [[0.25, 0.05, 0.02],
                 [0.05, -0.35, 0.07],
                 [0.02, 0.07, 0.40]]
    probs_rect1 = [[0.25, 0.05, 0.02],
                   [0.05, -0.35, 0.07]]
    probs_rect2 = [[0.25, 0.05],
                   [0.05, -0.35],
                   [0.02, 0.07]]
    asymprobs = [[0.25, 0.05, 0.01],
                 [0.05, -0.35, 0.07],
                 [0.02, 0.07, 0.40]]
    pytest.raises(nx.NetworkXException, sbm, sizes, badprobs1)
    pytest.raises(nx.NetworkXException, sbm, sizes, badprobs2)
    pytest.raises(nx.NetworkXException, sbm, sizes, probs_rect1, directed=True)
    pytest.raises(nx.NetworkXException, sbm, sizes, probs_rect2, directed=True)
    pytest.raises(nx.NetworkXException, sbm, sizes, asymprobs, directed=False)
    pytest.raises(nx.NetworkXException, sbm, sizes, probs, badnodelist)
    nodelist = [0] + list(range(449))  # repeated node name in nodelist
    pytest.raises(nx.NetworkXException, sbm, sizes, probs, nodelist)

    # Extra keyword arguments test
    GG = nx.stochastic_block_model(sizes, probs, seed=0, selfloops=True)
    assert G.nodes == GG.nodes
    GG = nx.stochastic_block_model(sizes, probs, selfloops=True, directed=True)
    assert G.nodes == GG.nodes
    GG = nx.stochastic_block_model(sizes, probs, seed=0, sparse=False)
    assert G.nodes == GG.nodes
示例#13
0
def generate_random_traffic_network(
        n_clients: int = 200,
        n_servers={
            "SMB": 1,
            "HTTP": 1,
            "RDP": 1,
        },
        seed: Optional[int] = 0,
        tolerance: np.float32 = np.float32(1e-3),
        alpha=np.array([(0.1, 0.3), (0.18, 0.09)], dtype=float),
        beta=np.array([(100, 10), (10, 100)], dtype=float),
) -> nx.DiGraph:
    """
    Randomly generate a directed multi-edge network graph representing
    fictitious SMB, HTTP, and RDP traffic.

    Arguments:
        n_clients: number of workstation nodes that can initiate sessions with server nodes
        n_servers: dictionary indicatin the numbers of each nodes listening to each protocol
        seed: seed for the psuedo-random number generator
        tolerance: absolute tolerance for bounding the edge probabilities in [tolerance, 1-tolerance]
        alpha: beta distribution parameters alpha such that E(edge prob) = alpha / beta
        beta: beta distribution parameters beta such that E(edge prob) = alpha / beta

    Returns:
        (nx.classes.multidigraph.MultiDiGraph): the randomly generated network from the hierarchical block model
    """
    edges_labels = defaultdict(set)  # set backed multidict

    for protocol in list(n_servers.keys()):
        sizes = [n_clients, n_servers[protocol]]
        # sample edge probabilities from a beta distribution
        np.random.seed(seed)
        probs: np.ndarray = np.random.beta(a=alpha, b=beta, size=(2, 2))

        # scale by edge type
        if protocol == "SMB":
            probs = 3 * probs
        if protocol == "RDP":
            probs = 4 * probs

        # don't allow probs too close to zero or one
        probs = np.clip(probs,
                        a_min=tolerance,
                        a_max=np.float32(1.0 - tolerance))

        # sample edges using block models given edge probabilities
        di_graph_for_protocol = nx.stochastic_block_model(sizes=sizes,
                                                          p=probs,
                                                          directed=True,
                                                          seed=seed)

        for edge in di_graph_for_protocol.edges:
            edges_labels[edge].add(protocol)

    digraph = nx.DiGraph()
    for (u, v), port in list(edges_labels.items()):
        digraph.add_edge(u, v, protocol=port)
    return digraph
	def SBM( self, sizes, probs ):
		self.G = nx.stochastic_block_model( sizes, probs )
		self.Adjacency = nx.to_scipy_sparse_matrix(self.G)
		self.Labels = []
		[self.Labels.extend([i for _ in range(sizes[i])]) for i in range(len(sizes))]
		self.Labels = np.array( self.Labels )
		self.labeled = True
		return
示例#15
0
def generate_ChangePoint(inter_prob, intra_prob, alpha):
    cps = [15, 30, 60, 75, 90, 105, 135]
    fname = "ChangePoint_" + str(inter_prob) + "_" + str(
        intra_prob) + "_" + str(alpha) + ".txt"

    cps_sizes = []
    cps_probs = []

    #let there be 500 nodes
    sizes_1 = [250, 250]  #500 nodes total at all times
    probs_1 = construct_SBM_block(sizes_1, inter_prob, intra_prob)

    sizes_2 = [125, 125, 125, 125]
    probs_2 = construct_SBM_block(sizes_2, inter_prob, intra_prob)

    sizes_3 = [50] * 10
    probs_3 = construct_SBM_block(sizes_3, inter_prob, intra_prob)

    list_sizes = []
    list_sizes.append(sizes_1)
    list_sizes.append(sizes_2)
    list_sizes.append(sizes_3)

    list_probs = []
    list_probs.append(probs_1)
    list_probs.append(probs_2)
    list_probs.append(probs_3)

    list_idx = 1
    sizes = sizes_2
    probs = probs_2
    maxt = 150
    G_0 = nx.stochastic_block_model(sizes, probs)
    G_0 = nx.Graph(G_0)
    G_t = G_0
    G_times = []
    G_times.append(G_t)

    for t in range(maxt):
        if (t in cps):
            if ((list_idx + 1) > len(list_sizes) - 1):
                list_idx = 0
            else:
                list_idx = list_idx + 1
            sizes = list_sizes[list_idx]
            probs = list_probs[list_idx]
            G_t = SBM_snapshot(G_t, alpha, sizes, probs)
            G_times.append(G_t)
            print("generating " + str(t), end="\r")

        else:
            G_t = SBM_snapshot(G_t, alpha, sizes, probs)
            G_times.append(G_t)
            print("generating " + str(t), end="\r")

    #write the entire history of snapshots
    to_edgelist(G_times, fname)
示例#16
0
def sbms3(n=100, n1=100, n2=50, n3=50, p=0.5, q=0.1):
    # generate n sbm graphs
    gs = []
    sizes = [n1, n2, n3]
    probs = [[p, q, q], [q, p, q], [q, q, p]]
    for i in range(n):
        g = stochastic_block_model(sizes, probs, seed=i)
        gs.append(g)
    return gs
示例#17
0
def generate_stochastic_block_model(sizes, probs):
    """

    :param sizes: sizes of each blocks
    :param probs: list of list of floats. Element(i, j) gives the density of edges
                going from nodes of group i to nodes of group j.
    :return: Stochastic block model NetworkX Graph
    """
    return nx.stochastic_block_model(sizes, probs, seed=0)
示例#18
0
def sbms(n=100, n1=100, n2=50, p=0.5, q=0.1):
    # generate n sbm graphs of 2 blocks whose size are n1 and n2
    gs = []
    sizes = [n1, n2]
    probs = [[p, q], [q, p]]
    for i in range(n):
        g = stochastic_block_model(sizes, probs, seed=i)
        gs.append(g)
    print(f'generating {n} sbm graphs of {n1} with p {p} and {n2} with p {q}')
    return gs
示例#19
0
def generate_initial_matrix(graph_size):
    """
    Generates the an n x n adj graph with a given level of community separation

    :param graph_size: the size of the graph.

    :return: Adj matrix with 2 seperate communities.
    """
    N = 20  # Time steps
    n = graph_size  # Nodes
    p = .4
    c = 2

    adj = np.zeros([n, n, 2 * N + 2])
    # Create random graph and store to the last lateral slice of adj
    G = nx.fast_gnp_random_graph(n, p, seed=4652, directed=False)
    G_adj = nx.to_numpy_matrix(G)
    adj[0:n, 0:n,
        0] = G_adj  # Stoer the first adjacency matrix in the first frontal slice of adj
    # Create another random graph and store to the last lateral slice of adj
    # G = nx.fast_gnp_random_graph(n,p,seed = 4652, directed = False)
    # G_adj = nx.to_numpy_matrix(G)
    adj[0:n, 0:n, (2 * N + 2) -
        1] = G_adj  # Store the last adjacency matrix in the last frontal slice of adj
    #  Generate graph community over 20 graphs.
    for i in range(1, N + 1):
        q = p - p * i / (N + 1)
        P = np.array([[p, q], [q, p]])
        Gsbm = nx.to_numpy_matrix(
            nx.stochastic_block_model([int(n / c), int(n / c)], P))
        adj[0:n, 0:n, i] = Gsbm
        # print(i)
    eps = 0.0
    for j in range(1, N + 2):
        q = p * (j - 1) / (
            N + 2) + eps  # remove the eps for complete dissconnectivity #
        P = np.array([[p, q], [q, p]])
        Gsbm = nx.to_numpy_matrix(
            nx.stochastic_block_model([int(n / c), int(n / c)], P))
        adj[0:n, 0:n, i + j] = Gsbm
        # print(i+j)

    return adj[:, :, 20]
def synthetic(n=20, m=20):
    # n communities of size m
    sizes = [m] * n

    # mixing matrix
    probs = np.ones((n, n)) * 0.05
    for i in range(n):
        probs[i][i] = 0.8
    #probs[:20][:20] += 0.1

    G = nx.stochastic_block_model(sizes, probs, seed=0)
    G.graph['name'] = 'synthetic'
    print(nx.info(G))

    ############## what if the graph is large ##################
    # the experiment shows that Wilk's theorem is true?!
    # in that way, n->+inf, the distribution is indeed chi-squared
    gnc = [list(range(i * m, i * m + m)) for i in range(n)]

    import random
    X = list(range(n * m))
    random.shuffle(X)
    tmp = {i: x for i, x in enumerate(X)}
    indices = [list(range(i * m, i * m + m)) for i in range(n)]
    # a completly random partition
    rand_comms = [list(map(tmp.get, row)) for row in indices]
    print("\n".join(map(str, rand_comms)))

    LR_test = _2ll(G, rand_comms)
    print("random communities", LR_test)

    LR_test = _2ll(G, gnc)
    print("ground truth", LR_test)

    pvalue(G, gnc, LR_test, L=3000, plothist=True)
    return
    ############# end of this experiment #######################

    # community detection
    comms = list(multiscale_community_detection(G, gamma=0.3))
    map_comm = {v: i for i, c in enumerate(comms) for v in c}

    # check NMI
    a = [map_comm[k] for k in G.nodes()]
    b = [k // m for k in G.nodes()]
    print("NMI=", metrics.adjusted_mutual_info_score(a, b))

    print("#Comm=", len(comms))
    print(comms)

    comms = greedy_modularity_communities(G)
    print("#Comm=", len(comms))
    print(comms)
示例#21
0
 def generate_SBM(self,Graphs_num=300,nodes_per_graph=60,block_size=10,fraction=0.3,mult_factor=1.2,avg_deg=10,test_size=0.2):
     blocks_num=int(nodes_per_graph/block_size)
     sizes=[block_size]*blocks_num
     G,y=[],[]
     for i in range (Graphs_num):                  
         p_in=fraction  if i <Graphs_num/2 else fraction*mult_factor
         p_out=(avg_deg-(block_size-1)*p_in)/(nodes_per_graph-block_size)
         p=p_out*np.ones([blocks_num]*2)+(p_in-p_out)*np.eye(blocks_num)
         #print(p_in,p_out)
         G.append(nx.stochastic_block_model(sizes, p))
         y.append(-1 if i<Graphs_num/2 else 1)            
     G_train, G_test, y_train, y_test = train_test_split(G, y, test_size=test_size)
     return (G_train,y_train),(G_test,y_test)
示例#22
0
def generate_network(n, on_the_run_tweaks):

    P_norm_dat = pd.read_csv('P_norm.csv', index_col=0)

    P_norm = np.array(P_norm_dat)
    #print(P_norm)

    # n = 1000
    Asi_population = int(0.08 * n)
    Lat_population = int(0.29 * n)
    Bla_population = int(0.30 * n)
    Whi_population = int(0.33 * n)

    #sizes = list([Asi_population, Lat_population, Bla_population, Whi_population])
    sizes = list(
        [Whi_population, Bla_population, Asi_population, Lat_population])

    # probs = [[AA , AL, AB, AW ], # Asian
    #          [AL, LL , LB, LW ], # Latino
    #          [AB, LB, BB, BW ],# Black
    #          [AW, LW, BW, WW]] # White
    #
    probs = P_norm

    if on_the_run_tweaks:
        call = 58
        cb = 1.08
        ca = 0.83
        cl = 1.04
        probs /= call

        probs[1, :] /= cb
        probs[:, 1] /= cb

        probs[2, :] /= ca
        probs[:, 2] /= ca

        probs[3, :] /= cl
        probs[:, 3] /= cl

    print(probs)
    g = stochastic_block_model(sizes, probs, sparse=True)

    # neigh = np.array(list(map(lambda i: len(list(g.neighbors(i))), range(len(g)))))
    # isolated_neighbors = []
    # if len(np.argwhere(neigh == 0)) != 0: isolated_neighbors = np.argwhere(neigh == 0)[:, 0]
    #
    # for i in isolated_neighbors:
    #     g.add_edge(i, np.random.randint(0, n))
    #     g.add_edge(i, np.random.randint(0, n))
    return g
def generate_network(n, on_the_run_tweaks):    
    P_norm_dat = pd.read_csv('P_norm.csv', index_col = 0)
    
    P_norm = np.array(P_norm_dat)
    
    global sizes
    #sizes = list([Asi_population, Lat_population, Bla_population, Whi_population])
    #sizes = list([Whi_population, Bla_population, Asi_population, Lat_population])
    sizes = np.array( pd.read_csv('Population_fraction.csv') )[0]
    sizes = sizes / sizes.sum() * n
    sizes = sizes.astype('int')
    
    probs = P_norm
    
    if on_the_run_tweaks:
        call = 57.5
        cb = 1.08
        ca = 0.83
        cl = 1.04
        probs /= call

        probs[1,:] /= cb
        probs[:,1] /= cb
        
        probs[2,:] /= ca
        probs[:,2] /= ca
        
        probs[3,:] /= cl
        probs[:,3] /= cl
    #print(P_norm_dat)
    #plt.imshow(P_norm_dat)
    #plt.colorbar()
    #plt.show()
    P_norm_dat[:] = probs
    #print(P_norm_dat)
    #plt.imshow(P_norm_dat)
    #plt.colorbar()
    P_norm_dat.to_csv('P_norm_adj.csv')
    print(probs)
    g = stochastic_block_model(sizes, probs, sparse=True)
    
    # neigh = np.array(list(map(lambda i: len(list(g.neighbors(i))), range(len(g)))))
    # isolated_neighbors = []
    # if len(np.argwhere(neigh == 0)) != 0: isolated_neighbors = np.argwhere(neigh == 0)[:, 0]
    #
    # for i in isolated_neighbors:
    #     g.add_edge(i, np.random.randint(0, n))
    #     g.add_edge(i, np.random.randint(0, n))
    return g
示例#24
0
    def run(self, num_itera=30):
        if num_itera == 1:
            self.G_ = nx.stochastic_block_model(self.sizes, self.probs)
            self.A = nx.to_numpy_array(self.G_)
        else:
            # Run SBM
            Anull = [
                nx.to_numpy_array(
                    nx.stochastic_block_model(self.sizes, self.probs))
                for i in range(num_itera)
            ]
            Anull_mean = np.mean(Anull, axis=0)

            self.A = Anull_mean
            self.G_ = nx.stochastic_block_model(self.sizes, self.probs)

        # Get partition/communities - loop through every node and find
        # ... its RSN community based on the index bounds for each RSN
        bounds = np.array(self.__rsn_index_change(self.labels)[1:])
        bounds[-1] += 1
        self.partition = {
            node: np.where(node < bounds)[0][0]
            for node in list(self.G_.nodes())
        }
示例#25
0
def generate_sbm(sizes, probs, maxweight=1):
    """Generate a Stochastic Block Model graph.

    Assign random values drawn from U({1, ...,  maxw}) to the edges.

    sizes     : list of sizes (int) of the blocks
    probs     : matrix of probabilities (in [0, 1]) of edge creation
                between nodes depending on the blocks they belong to
    maxweight : maximum value of the weights to randomly assign
                (default 1, resulting in weights all equal to 1)
    """
    graph = nx.stochastic_block_model(sizes, probs)
    weights = 1 + np.random.choice(maxweight, len(graph.edges))
    weights = dict(zip(graph.edges, weights))
    nx.set_edge_attributes(graph, weights, 'weight')
    return graph
示例#26
0
def desymmetric_stochastic(sizes=[100, 100, 100],
                           probs=[[0.5, 0.45, 0.45], [0.45, 0.5, 0.45],
                                  [0.45, 0.45, 0.5]],
                           seed=0,
                           off_diag_prob=0.9,
                           norm=False):
    from sklearn.model_selection import train_test_split

    g = nx.stochastic_block_model(sizes, probs, seed=seed)
    original_A = nx.adjacency_matrix(g).todense()
    A = original_A.copy()

    # for blocks represent adj within clusters
    accum_size = 0
    for s in sizes:
        x, y = np.where(
            np.triu(original_A[accum_size:s + accum_size,
                               accum_size:s + accum_size]))
        x1, x2, y1, y2 = train_test_split(x, y, test_size=0.5)
        A[x1 + accum_size, y1 + accum_size] = 0
        A[y2 + accum_size, x2 + accum_size] = 0
        accum_size += s

    # for blocks represent adj out of clusters (cluster2cluster edges)
    accum_x, accum_y = 0, 0
    n_cluster = len(sizes)

    for i in range(n_cluster):
        accum_y = accum_x + sizes[i]
        for j in range(i + 1, n_cluster):
            x, y = np.where(original_A[accum_x:sizes[i] + accum_x,
                                       accum_y:sizes[j] + accum_y])
            x1, x2, y1, y2 = train_test_split(x, y, test_size=off_diag_prob)

            A[x1 + accum_x, y1 + accum_y] = 0
            A[y2 + accum_y, x2 + accum_x] = 0

            accum_y += sizes[j]

        accum_x += sizes[i]
    # label assignment based on parameter sizes
    label = []
    for i, s in enumerate(sizes):
        label.extend([i] * s)
    label = np.array(label)

    return np.array(original_A), np.array(A), label
示例#27
0
    def create_sb_graph(self):
        """
        Generating a stochastic block graph.
        Example parameter dictionary: { "method": "sb", "n_blocks": 10, "p": 0.1, "k": 0.01 } 

        self.p : float
            Probability of the edge between nodes belonging to different components
        self.k : float
            Probability of edges within a block/community
        self.n_blocks : int
            Number of blocks/communities that are to be created within the network
        """
        n_blocks = self.params['n_blocks']
        probabilities = np.full((n_blocks, n_blocks), self.params['p'])
        np.fill_diagonal(probabilities, self.params['k'])
        block_sizes = [int(self.n / n_blocks) for _ in range(n_blocks)]
        self.G = nx.stochastic_block_model(block_sizes, probabilities)
示例#28
0
def block_stochastic(parameters):
    """Construct the block stochastic graphs.

    Parameters
    ----------
    parameters : tuple
        List of parameters:
            n_range: range of graph sizes,
            prob_type: type of edge probabilities to be set
            rep_graph: number of graphs to be generated per n.
            seed: random seed to be used

    Returns
    -------
    list
        list of networkx.Digraphs

    """
    n_range, prob_type, rep_graph, seed = parameters
    p_range = [0.03 * i for i in range(1, 10)]
    graphs = []
    for n in n_range:
        for i in range(rep_graph):
            sizes = [
                ceil(4 * n / 12),
                ceil(3 * n / 12),
                ceil(2 * n / 12),
                ceil(1 * n / 12),
                ceil(1 * n / 12),
                ceil(1 * n / 12)
            ]
            for p in p_range:
                probs = (.3 - p) * (np.ones(6) - np.eye(6)) + p * (np.eye(6))

                U = nx.stochastic_block_model(sizes, probs, seed=seed)
                G = random_direct(U)
                G.graph['graphname'] = '_'.join(
                    ['block_stochastic', 'n',
                     str(n), 'p',
                     str(p),
                     str(i)])
                set_probabilities(G, prob_type=prob_type)
                set_unit_node_weights(G)
                graphs.append(G)
    return graphs
示例#29
0
def run_community_graph(args):
    #test if Lx and Ly are the same, then dist should be small!
    #laplacian make integral at end.   Inverse is often quite small for images!  ?? leading to tiny evals. even neg
    #args.Lx = torch.eye(args.m)*torch.abs(torch.randn((args.m, args.m)))*2  #utils.symmetrize(torch.randn((args.m, args.m)))
    args.m = 12
    args.n = 4
    if args.fix_seed:
        torch.manual_seed(0)
    g = nx.stochastic_block_model([6, 6], [[0.9, 0.1], [0.1, 0.9]], seed=8576)
    #components = nx.connected_components(g)
    g.remove_nodes_from(list(nx.isolates(g)))
    args.m = len(g)
    Lx = nx.laplacian_matrix(g, range(args.m)).todense()
    args.Lx = torch.from_numpy(Lx).to(
        dtype=torch.float32)  #+ torch.ones(args.m, args.m)/args.m

    args.n_epochs = 370  #100
    graph.graph_dist(args)
示例#30
0
def run_community_graph(args):

    args.m = 12
    args.n = 4
    if args.fix_seed:
        torch.manual_seed(0)
    #args.Lx = torch.randn(args.m*(args.m-1)//2)  #torch.FloatTensor([[1, -1], [-1, 2]])
    #args.Lx = realize_upper(args.Lx, args.m)
    #pdb.set_trace()
    g = nx.stochastic_block_model([6,6],[[0.9,0.1],[0.1,0.9]], seed = 8576)
    #components = nx.connected_components(g)
    g.remove_nodes_from(list(nx.isolates(g)))
    args.m = len(g)
    
    Lx = nx.laplacian_matrix(g, range(args.m)).todense()
    args.Lx = torch.from_numpy(Lx).to(dtype=torch.float32) #+ torch.ones(args.m, args.m)/args.m
    
    args.n_epochs = 370 #100
    graph.graph_dist(args)
示例#31
0
def SBM_ER(N_group, p, weight, seed):
    """TODO: Docstring for SBM_ER.

    :N_group: TODO
    :p: TODO
    :seed: TODO
    :returns: TODO

    """
    G = nx.stochastic_block_model(N_group, p, seed=seed)
    A = nx.to_numpy_array(G)
    A = A * weight
    A_index = np.where(A > 0)
    A_interaction = A[A_index]
    index_i = A_index[0]
    index_j = A_index[1]
    degree = np.sum(A > 0, 1)
    cum_index = np.hstack((0, np.cumsum(degree)))
    return A, A_interaction, index_i, index_j, cum_index