def get_fbvs_max_size(self, g: MultiGraph, k: int) -> set:
        if len(g) <= k + 2:
            return set(g.nodes()[:k])

        # Construct a trivial FVS of size k + 1 on the first k + 3 vertices of G.
        nodes = g.nodes()

        # The set of nodes currently under consideration.
        node_set = set(nodes[:(k + 2)])

        # The current best solution, of size (k + 1) before each compression step,
        # and size <= k at the end.
        soln = set(nodes[:k])

        for i in range(k + 2, len(nodes)):
            soln.add(nodes[i])
            node_set.add(nodes[i])

            if len(soln) < k + 1:
                continue

            assert (len(soln) == (k + 1))
            assert (len(node_set) == (i + 1))

            new_soln = self.ic_compression(g.subgraph(node_set), soln, k)

            if new_soln is None:
                return None

            soln = new_soln
            assert (len(soln) <= k)

        return soln
示例#2
0
    def test_auto_neb(self):
        # Test AutoNEB procedure
        graph = MultiGraph()
        for idx, minimum in enumerate(self.minima):
            graph.add_node(idx + 1, **minimum)

        # Set up AutoNEB schedule
        spring_constant = float("inf")
        eval_config = EvalConfig(128)
        optim_config_1 = OptimConfig(10, SGD, {"lr": 0.1}, None, None, eval_config)
        optim_config_2 = OptimConfig(10, SGD, {"lr": 0.01}, None, None, eval_config)
        weight_decay = 0
        subsample_pivot_count = 1
        neb_configs = [
            NEBConfig(spring_constant, weight_decay, equal, {"count": 2}, subsample_pivot_count, optim_config_1),
            NEBConfig(spring_constant, weight_decay, highest, {"count": 3, "key": "dense_train_loss"}, subsample_pivot_count, optim_config_1),
            NEBConfig(spring_constant, weight_decay, highest, {"count": 3, "key": "dense_train_loss"}, subsample_pivot_count, optim_config_2),
            NEBConfig(spring_constant, weight_decay, highest, {"count": 3, "key": "dense_train_loss"}, subsample_pivot_count, optim_config_2),
        ]
        auto_neb_config = AutoNEBConfig(neb_configs)
        self.assertEqual(auto_neb_config.cycle_count, len(neb_configs))

        # Run AutoNEB
        auto_neb(1, 2, graph, self.model, auto_neb_config)
        self.assertEqual(len(graph.edges), auto_neb_config.cycle_count)
示例#3
0
def auto_neb(m1,
             m2,
             graph: MultiGraph,
             model: models.ModelWrapper,
             config: config.AutoNEBConfig,
             callback: callable = None):
    # Continue existing cycles or start from scratch
    if m2 in graph[m1]:
        existing_edges = graph[m1][m2]
        previous_cycle_idx = max(existing_edges)
        connection_data = graph[m1][m2][previous_cycle_idx]
        start_cycle_idx = previous_cycle_idx + 1
    else:
        connection_data = {
            "path_coords":
            torch.cat([graph.nodes[m]["coords"].view(1, -1)
                       for m in (m1, m2)]),
            "target_distances":
            torch.ones(1)
        }
        start_cycle_idx = 1
    assert start_cycle_idx <= config.cycle_count

    # Run NEB and add to graph
    for cycle_idx in helper.pbar(
            range(start_cycle_idx, config.cycle_count + 1), "AutoNEB"):
        cycle_config = config.neb_configs[cycle_idx - 1]
        connection_data = neb(connection_data, model, cycle_config)
        graph.add_edge(m1,
                       m2,
                       key=cycle_idx,
                       **helper.move_to(connection_data, "cpu"))
        if callback is not None:
            callback()
示例#4
0
def test_relabel_nodes_multigraph():
    """failed after switching to dg.relabel_nodes"""
    G = MultiGraph([('a', 'b'), ('a', 'b')])
    mapping = {'a': 'aardvark', 'b': 'bear'}
    G = relabel_nodes(G, mapping, copy=False)
    assert sorted(G.nodes()) == ['aardvark', 'bear']
    assert_edges_equal(sorted(G.edges()), [('aardvark', 'bear'),
                                           ('aardvark', 'bear')])
示例#5
0
def connect_routes(lab, lst, g: nx.MultiGraph):
    links = list(lst.linkid)
    if len(links) == 0:
        return
    for i in range(len(links)-1):
        conn = g.edges.get((links[i], links[i+1], 0))
        if conn is None or conn['label'] != lab.iloc[0]:
            g.add_edge(links[i], links[i+1], label=lab.iloc[0])
 def initGraph(self):
     self.shuttlingGraph = MultiGraph()
     for edge in self:
         self.shuttlingGraph.add_node(edge.startName)
         self.shuttlingGraph.add_node(edge.stopName)
         self.shuttlingGraph.add_edge(edge.startName, edge.stopName, key=hash(edge), edge=edge,
                                      weight=abs(edge.stopLine-edge.startLine))
         self.nodeLookup[edge.startLine] = edge.startName
         self.nodeLookup[edge.stopLine] = edge.stopName
示例#7
0
def __make_route_graph(routes):
    graph = MultiGraph()
    for route in routes:
        # assume each segment has weight 1 -  we could estimate edge weight via
        # distance bewteen stops (we have location information), but we have
        # no information to tell us how fast any particular service is.
        make_route_segment = lambda src, dst: (src, dst, {'route': route})
        segments = zip_with(make_route_segment, route.stops(), tail(route.stops()))
        graph.add_edges_from(segments)
    return graph
示例#8
0
 def reduction3(self, g: MultiGraph, k: int) -> (int, List[int], bool):
     """
     If there is a vertex v of degree at most 1, delete v.
     """
     changed = False
     for v in g.nodes():
         if g.degree(v) <= 1:
             g.remove_node(v)
             changed = True
     return k, None, changed
示例#9
0
 def reduction3(self, g: MultiGraph, k: int) -> (int, List[int], bool):
     """
     If there is a vertex v of degree at most 1, delete v.
     """
     changed = False
     for v in g.nodes():
         if g.degree(v) <= 1:
             g.remove_node(v)
             changed = True
     return k, None, changed
示例#10
0
def rem(g: nx.MultiGraph) -> None:
    node_attributes = nx.get_node_attributes(G, 'elderly')
    nodes = list(g.nodes)
    for node in nodes:
        neigh = list(g.neighbors(node))

        if len(neigh) == 2 and (g.degree(node) % 2) == 0:
            try:
                set1 = {
                    edge['label']
                    for edge in g.get_edge_data(node, neigh[0]).values()
                }
            except:
                print(g.get_edge_data(node, neigh[0]))
            set2 = {
                edge['label']
                for edge in g.get_edge_data(node, neigh[1]).values()
            }
            if set1 == set2:
                #prec=node_attributes[neigh[0]]+0.001
                succ = node_attributes[neigh[1]] + 0.001
                node_attr = node_attributes[node] + 0.001
                # if (abs((node_attr-prec))<1000) and (abs((node_attr-succ))<1000):
                if (abs((node_attr - succ)) < 1000):
                    g.remove_node(node)
                    for edge_label in set1:
                        g.add_edge(neigh[0], neigh[1], label=edge_label)
示例#11
0
def add_drugs_in_graph(graph: nwx.MultiGraph, drugs_list_graph: list):
    '''
     Add graph node in a graph
     @parameter : graph
     @parameter :  drugs_list_graph
     @return : drugs_list_graph
     '''
    for item in drugs_list_graph:
        graph.add_node(item["drug"], atccode=item["atccode"])

    return graph
示例#12
0
def add_edge_journal_in_graph(graph: nwx.MultiGraph, journal_edge):

    for item in journal_edge:
        if item['edge_list']:
            for edge in item['edge_list']:
                graph.add_edge(edge[0],
                               edge[1],
                               journal=item['journal'],
                               date=item['date'])

    return graph
示例#13
0
 def reduction1(self, g: MultiGraph, k: int) -> (int, List[int], bool):
     """
     If there is a loop at a vertex v, delete v from the graph and decrease k by 1.
     """
     changed = False
     vs = g.nodes_with_selfloops()
     for v in vs:
         g.remove_node(v)
         k -= 1
         changed = True
     return k, vs, changed
示例#14
0
 def reduction1(self, g: MultiGraph, k: int) -> (int, List[int], bool):
     """
     If there is a loop at a vertex v, delete v from the graph and decrease k by 1.
     """
     changed = False
     vs = g.nodes_with_selfloops()
     for v in vs:
         g.remove_node(v)
         k -= 1
         changed = True
     return k, vs, changed
示例#15
0
def get_fbvs(graph):
    if is_acyclic(graph):
        return set()

    if type(graph) is not MultiGraph:
        graph = MultiGraph(graph)

    for i in range(1, graph.number_of_nodes()):
        result = get_fbvs_max_size(graph, i)
        if result is not None:
            return result  # in the worst case, result is n-2 nodes
示例#16
0
 def test_diamond():
     multigraph = MultiGraph()
     multigraph.add_nodes_from(range(4))
     breakpoint_graph = BreakpointGraph(multigraph)
     first_color = ['A', 'C']
     second_color = ['B', 'D']
     topology = (first_color, second_color)
     breakpoint_graph.add_edge(0, 1, Multicolor(*[A]))
     breakpoint_graph.add_edge(2, 3, Multicolor(*[B]))
     breakpoint_graph.add_edge(1, 2, Multicolor(*[C]))
     breakpoint_graph.add_edge(0, 3, Multicolor(*[D]))
     assert (len(find_diamond_patterns(breakpoint_graph)) == 1)
示例#17
0
def add_edge_pubmed_in_graph(graph: nwx.MultiGraph, pubmed_edge):

    for item in pubmed_edge:
        if item['edge_list']:
            for edge in item['edge_list']:
                graph.add_edge(edge[0],
                               edge[1],
                               id_pubmed=item['id_pubmed'],
                               title_pubmed=item['title_pubmed'],
                               date=item['date'])

    return graph
示例#18
0
 def test_paths():
     multigraph = MultiGraph()
     multigraph.add_nodes_from(range(4))
     breakpoint_graph = BreakpointGraph(multigraph)
     first_color = ['A', 'C']
     second_color = ['B', 'D']
     topology = (first_color, second_color)
     breakpoint_graph.add_edge(0, 1, Multicolor(*first_color))
     breakpoint_graph.add_edge(2, 3, Multicolor(*first_color))
     breakpoint_graph.add_edge(1, 2, Multicolor(*second_color))
     breakpoint_graph.add_edge(0, 3, Multicolor(*second_color))
     assert (get_size_of_alternating_structures(breakpoint_graph, topology) == 3)
示例#19
0
def add_edge_clinical_in_graph(graph: nwx.MultiGraph, clinical_edge):

    for item in clinical_edge:
        if item['edge_list']:
            for edge in item['edge_list']:
                graph.add_edge(edge[0],
                               edge[1],
                               id_clinical=item['id_clinical'],
                               title_clinical=item['title_clinical'],
                               date=item['date'])

    return graph
示例#20
0
文件: utils.py 项目: oStritze/sna
def generate_snapshots_over_time(G: nx.MultiGraph,
                                 minutes=0,
                                 hours=0,
                                 days=0,
                                 max_snapshots=None,
                                 interval=None,
                                 include_final=False,
                                 cummulative=True):
    """
	:param G: MultiGraph you want to watch over time, with "created_at" edge attribute
	:param minutes: Number of minutes between two snapshots (Default 0)
	:param hours: Number of hours between two snapshots (Default 0)
	:param days: Number of days between two snapshots (Default 0)
	:param max_snapshots: Maximum number of generated snapshots (Default None - all snapshots are created)
	:param interval: Tuple (start, end) specifying in which interval to generate snapshots (Default None - takes min, max created_at date of G)
	:param include_final: If True, set G as value for max_date (Default False)
	:return: A dict with timestamps
	"""
    if nx.get_edge_attributes(G, "created_at") == {}:
        raise Exception("Graph needs 'created_at' edge attribute")
    if minutes < 0 or hours < 0 or days < 0 or minutes + hours + days <= 0:
        raise Exception("Illegal minutes, hours or days values")

    edges = G.edges(data=True)
    created_ats = [attr["created_at"] for (_, _, attr) in edges]
    if interval is None:
        date = str_to_datetime(min(created_ats))
        max_date = str_to_datetime(max(created_ats))
    else:
        date = str_to_datetime(interval[0])
        max_date = str_to_datetime(interval[1])
    snapshots = {}
    while date <= max_date and (max_snapshots is None
                                or len(snapshots) < max_snapshots):
        if cummulative:
            edges_snapshot = [(a, b) for (a, b, attr) in edges
                              if str_to_datetime(attr["created_at"]) <= date]
        else:
            edges_snapshot = [
                (a, b) for (a, b, attr) in edges
                if (date <= str_to_datetime(attr["created_at"]) <= date +
                    timedelta(minutes=minutes, hours=hours, days=days))
            ]
        nodes_snapshot = list(sum(edges_snapshot, ()))
        G_snapshot = G.subgraph(nodes_snapshot)
        snapshots[date] = reduce_multi_graph(G_snapshot)

        date += timedelta(minutes=minutes, hours=hours, days=days)

    if include_final:
        snapshots[max_date] = reduce_multi_graph(G)
    return snapshots
示例#21
0
    def __init__(self, nodes=None, edges=None):

        self.graph = MultiGraph()

        # Nodes
        nodes = nodes or {}
        for node_id, (lon, lat) in nodes.items():
            self.add_node(node_id, lon, lat)

        # Edges
        edges = edges or {}
        for (n1, n2), (edge_type, dict_attrs) in edges.items():
            self.add_edge(n1, n2, edge_type, **dict_attrs)
    def generalized_degree(self, g: MultiGraph, f: set, active_node, node) -> (int, set):
        assert g.has_node(node), "Calculating gd for node which is not in g!"

        k = set(g.neighbors(node))
        k.remove(active_node)
        k = k.intersection(f)

        gx = self.compress(g, k, node)

        neighbors = list(gx.neighbors(node))
        neighbors.remove(active_node)

        return len(neighbors), neighbors
示例#23
0
def generalized_degree(g: MultiGraph, f: set, active_node, node) -> (int, set):
	assert g.has_node(node), "Calculating gd for node which is not in g!"

	k = set(g.neighbors(node))
	k.remove(active_node)
	k = k.intersection(f)

	gx = compress(g, k, node)

	neighbors = gx.neighbors(node)
	neighbors.remove(active_node)

	return (len(neighbors), neighbors)
示例#24
0
def add_weak_gene(gene: EdgeGene, graph: nx.MultiGraph) -> bool:
    key = gene.A1 + gene.A2
    edge = (gene.P1, gene.P2, key)
    if any(starmap(
            lambda p, a: p in graph and not any(x == a for x in get_node_space(graph, p)),
            [(gene.P1, gene.A1), (gene.P2, gene.A2)])):
        return False
    if graph.has_edge(gene.P1, gene.P2):
        keys = graph[gene.P1][gene.P2]
        if len(keys) > 1:
            return False
        graph.remove_edge(gene.P1, gene.P2, next(iter(keys)))
    graph.add_edge(*edge, gene=gene)
    return True
示例#25
0
def _transact(graph: nx.MultiGraph, src: int, tgt: int, amount: int, new_node: int, info: dict):
    from more_itertools import pairwise

    path, weights, fees = find_route(graph, src, tgt, amount)

    # no path found
    if path is None:
        info['no_path'] += 1
        return

    for (node, neighbour) in pairwise(path):
        channel_trans_amt = weights[neighbour]
        channel_policy = graph.get_policy(node, neighbour)

        # channel cannot handle transaction
        if channel_policy.balance < channel_trans_amt:
            info['channel_imbalance'] += 1
            if node == new_node or neighbour == new_node:
                info['failure'][node, neighbour] += 1
                raise Exception('Adversary channel imbalance')
            return

    # record successful transaction
    info['total_success'] += 1

    total_amt = 0
    # move amount between nodes in path
    for (node, neighbour) in pairwise(path):
        if neighbour is None:
            # remove total amount from src
            graph.nodes[path[0]]['data'].capacity -= total_amt
            # add amount to tgt
            graph.nodes[node]['data'].capacity += weights[node]
            break

        channel_trans_amt = weights[neighbour]
        channel_policy = graph.get_policy(node, neighbour)

        # pay channel fees to node
        graph.nodes[node]['data'].capacity += fees[node]
        total_amt += fees[node]

        # shift channel balance
        channel_policy.balance -= channel_trans_amt
        graph.get_policy(neighbour, node).balance += channel_trans_amt

        # record profit for adversary
        if node == new_node or neighbour == new_node:
            info['success'][node, neighbour] += 1
            info['profit'][node, neighbour] += fees[node]
示例#26
0
def main():
    parser = ArgumentParser()
    parser.add_argument("project_directory", nargs=1)
    parser.add_argument("config_file", nargs=1)
    parser.add_argument("--no-backup", default=False, action="store_true")
    args = parser.parse_args()

    project_directory = args.project_directory[0]
    config_file = args.config_file[0]
    graph_path, project_config_path = setup_project(config_file,
                                                    project_directory)

    model, minima_count, min_config, lex_config = read_config_file(
        project_config_path)

    # Setup Logger
    root_logger = getLogger()
    root_logger.setLevel(INFO)
    root_logger.addHandler(StreamHandler(sys.stdout))
    root_logger.addHandler(
        FileHandler(join(project_directory, "exploration.log")))

    # === Create/load graph ===
    if isfile(graph_path):
        if not args.no_backup:
            root_logger.info("Copying current 'graph.p' to backup file.")
            copyfile(
                graph_path,
                graph_path.replace(".p", f"_bak{strftime('%Y%m%d-%H%M')}.p"))
        else:
            root_logger.info(
                "Not creating a backup of 'graph.p' because of user request.")
        graph = repair_graph(load_pickle_graph(graph_path), model)
    else:
        graph = MultiGraph()

    # Call this after every optmisiation
    def save_callback():
        store_pickle_graph(graph, graph_path)

    # === Ensure the specified number of minima ===
    for _ in pbar(range(len(graph.nodes), minima_count), "Finding minima"):
        minimum_data = find_minimum(model, min_config)
        graph.add_node(
            max(graph.nodes) + 1 if len(graph.nodes) > 0 else 1,
            **move_to(minimum_data, "cpu"))
        save_callback()

    # === Connect minima ===
    landscape_exploration(graph, model, lex_config, callback=save_callback)
示例#27
0
def subgraph_by_timestamp(mg: nx.MultiGraph, start: int, end: int) -> nx.Graph:
    edges = filter(
        lambda edge: start <= edge[2]["timestamp"] and edge[2]["timestamp"] <
        end,
        mg.edges(data=True),
    )
    g = nx.Graph()
    for node in mg.nodes():
        g.add_node(node)
    for u, v, data in edges:
        if g.has_edge(u, v):
            g[u][v]["weight"] += data["weight"]
        else:
            g.add_edge(u, v, weight=data["weight"])
    return g
示例#28
0
def get_graph_extents(
        networkX_multigraph: nx.MultiGraph
) -> Tuple[float, float, float, float]:
    """
    Parameters
    ----------
    networkX_multigraph
        A `NetworkX` `MultiGraph` with `x` and `y` node parameters.

    Returns
    -------
    Tuple
        A tuple of `min_x`, `min_y`, `max_x`, `max_y` values.
    """
    # get min and maxes for x and y
    min_x = np.inf
    max_x = -np.inf
    min_y = np.inf
    max_y = -np.inf

    for n, d in networkX_multigraph.nodes(data=True):
        if d['x'] < min_x:
            min_x = d['x']
        if d['x'] > max_x:
            max_x = d['x']
        if d['y'] < min_y:
            min_y = d['y']
        if d['y'] > max_y:
            max_y = d['y']

    return min_x, min_y, max_x, max_y
示例#29
0
    def _get_fbvs_max_size(self, g: MultiGraph, k: int) -> set:
        # Exhaustively apply reductions
        k, x0 = self.apply_reductions(g, k)

        # Originally reduction 5: if k < 0, terminate the algorithm and conclude that
        # (G, k) is a no-instance.
        if k < 0:
            return None

        # If G is an empty graph, then we return soln_redux
        if len(g) == 0:
            return x0

        # Pick a random edge, then a random end node of that edge
        rand_edge = choice(g.edges())
        v = choice(rand_edge)

        # We recurse on (G - v, k − 1).
        xn = self._get_fbvs_max_size(graph_minus(g, {v}), k - 1)

        if xn is None:
            # If the recursive step returns a failure, then we return a failure as well.
            return None
        else:
            # If the recursive step returns a feedback vertex set Xn, then we return X = Xn ∪ {v} ∪ X0.
            return xn.union({v}).union(x0)
示例#30
0
    def setUp(self):
        # Create digraph with negative resource costs with unreachable node 'E'
        self.G = DiGraph(directed=True, n_res=2)
        self.G.add_edge('Source', 'A', res_cost=array([1, 2]), weight=0)
        self.G.add_edge('A', 'C', res_cost=array([-1, 0.3]), weight=0)
        self.G.add_edge('A', 'B', res_cost=array([-1, 3]), weight=0)
        self.G.add_edge('B', 'D', res_cost=array([-1, 2]), weight=0)
        # Unreachable node E
        self.G.add_edge('B', 'E', res_cost=array([10, 1]), weight=0)
        self.G.add_edge('C', 'D', res_cost=array([1, 0.1]), weight=0)
        self.G.add_edge('D', 'Sink', res_cost=array([1, 0.1]), weight=0)

        # Create digraph with a resource infeasible minimum cost path
        self.H = MultiGraph(directed=True)
        self.H.add_edge('Source', 'A', res_cost=array([1, 1]), weight=-1)
        self.H.add_edge('A', 'B', res_cost=array([1, 1]), weight=-1)
        self.H.add_edge('B', 'Sink', res_cost=array([1, 1]), weight=-1)
        self.H.add_edge('Sink', 'Source', weight=-1)
        self.max_res, self.min_res = ["foo"], ["bar"]

        # Create digraph to test issue 72
        self.F = DiGraph(n_res=1)
        self.F.add_edge('Source', 'A', res_cost=array([1]), weight=1)
        self.F.add_edge('A', 'B', res_cost=array([10]), weight=1)
        self.F.add_edge('A', 'Sink', res_cost=array([1]), weight=1)
示例#31
0
    def _get_fbvs_max_size(self, g: MultiGraph, k: int) -> set:
        # Exhaustively apply reductions
        k, x0 = self.apply_reductions(g, k)

        # Originally reduction 5: if k < 0, terminate the algorithm and conclude that
        # (G, k) is a no-instance.
        if k < 0:
            return None

        # If G is an empty graph, then we return soln_redux
        if len(g) == 0:
            return x0

        # Pick a random edge, then a random end node of that edge
        rand_edge = choice(g.edges())
        v = choice(rand_edge)

        # We recurse on (G - v, k − 1).
        xn = self._get_fbvs_max_size(graph_minus(g, {v}), k - 1)

        if xn is None:
            # If the recursive step returns a failure, then we return a failure as well.
            return None
        else:
            # If the recursive step returns a feedback vertex set Xn, then we return X = Xn ∪ {v} ∪ X0.
            return xn.union({v}).union(x0)
示例#32
0
def compress(g: MultiGraph, t: set, compressed_node, mutate=False) -> MultiGraph:
	if not t:
		return g
	if mutate:
		gx = g
	else:
		gx = g.copy()

	tx = t
	if compressed_node in tx:
		tx = t.copy()
		tx.remove(compressed_node)
	gx.add_node(compressed_node)

	for node in tx:
		for edge in gx.edges(node):
			if edge[0] == node:
				node_2 = edge[1]
			else:
				node_2 = edge[0]
			if not (node_2 in t or node_2 == compressed_node):
				gx.add_edge(compressed_node, node_2)
		gx.remove_node(node)

	remove = set()
	for node in gx.adj[compressed_node]:
		if len(gx.adj[compressed_node][node]) >= 2:
			# Using a set to remove to avoid messing up iteration of adj
			remove.add(node)

	for node in remove:
		gx.remove_node(node)

	return gx
示例#33
0
def test_run_walks():
    mg = MultiGraph()
    mg.add_edge('a', 'b')
    mg.add_edge('b', 'c')
    dw = DeepWalk(mg, 10, 100)
    dw.get_walks(workers=1)
    # Number of neighbors for all nodes together is 4, times niter: 400
    assert len(dw.walks) == 400, len(dw.walks)
    assert len([w for w in dw.walks if w[0] == 'a']) == 100
    assert len([w for w in dw.walks if w[0] == 'b']) == 200

    dw.get_walks(workers=2)
    # Number of neighbors for all nodes together is 4, times niter: 400
    assert len(dw.walks) == 400, len(dw.walks)
    assert len([w for w in dw.walks if w[0] == 'a']) == 100
    assert len([w for w in dw.walks if w[0] == 'b']) == 200
示例#34
0
    def multiple_edges(self, new):
        """
        Get/set whether or not self allows multiple edges.
        
        INPUT:
            new: boolean or None
        
        DOCTEST:
            sage: G = sage.graphs.base.graph_backends.NetworkXGraphBackend()
            sage: G.multiple_edges(True)
            sage: G.multiple_edges(None)
            True
        """
        try:
            assert(not isinstance(self._nxg, (NetworkXGraphDeprecated, NetworkXDiGraphDeprecated)))
        except AssertionError:
            self._nxg = self._nxg.mutate()

        from networkx import Graph,MultiGraph,DiGraph,MultiDiGraph
        if new is None:
            return self._nxg.is_multigraph()
        if new == self._nxg.is_multigraph():
            return
        if new:
            if self._nxg.is_directed():
                self._nxg = MultiDiGraph(self._nxg)
            else:
                self._nxg = MultiGraph(self._nxg)
        else:
            if self._nxg.is_directed():
                self._nxg = DiGraph(self._nxg)
            else:
                self._nxg = Graph(self._nxg)
    def compress(self, g: MultiGraph, t: set, compressed_node, mutate=False) -> MultiGraph:
        if not t:
            return g
        if mutate:
            gx = g
        else:
            gx = g.copy()

        tx = t
        if compressed_node in tx:
            tx = t.copy()
            tx.remove(compressed_node)
        gx.add_node(compressed_node)

        for node in tx:
            for edge in gx.edges(node):
                if edge[0] == node:
                    node_2 = edge[1]
                else:
                    node_2 = edge[0]
                if not (node_2 in t or node_2 == compressed_node):
                    gx.add_edge(compressed_node, node_2)
            gx.remove_node(node)

        remove = set()
        for node in gx.adj[compressed_node]:
            if len(gx.adj[compressed_node][node]) >= 2:
                # Using a set to remove to avoid messing up iteration of adj
                remove.add(node)

        for node in remove:
            gx.remove_node(node)

        return gx
示例#36
0
    def __init__(self,
                 symbols=None,
                 positions=None,
                 numbers=None,
                 tags=None,
                 momenta=None,
                 masses=None,
                 magmoms=None,
                 charges=None,
                 scaled_positions=None,
                 cell=None,
                 pbc=None,
                 celldisp=None,
                 constraint=None,
                 calculator=None,
                 info=None,
                 edges=None):
        super().__init__(symbols, positions, numbers, tags, momenta, masses,
                         magmoms, charges, scaled_positions, cell, pbc,
                         celldisp, constraint, calculator, info)

        if self.pbc.any():
            self._graph = MultiGraph()
        else:
            self._graph = Graph()

        nodes = [[i, {
            'number': n
        }] for i, n in enumerate(self.arrays['numbers'])]
        self._graph.add_nodes_from(nodes)

        if edges:
            self._graph.add_edges_from(edges, bonds=1)

        self._surface_atoms = None
示例#37
0
def simplify(streckennetz: nx.MultiGraph) -> nx.MultiGraph:
    print('simplifying...')

    # Remove the shorter edge of two parallel edges
    edges_to_remove = []
    for edges_index in streckennetz.edges():
        edges = streckennetz[edges_index[0]][edges_index[1]]
        if len(edges) > 1:
            min_length = edges[0]['length']
            min_length_index = 0
            for i in edges:
                if edges[i]['length'] < min_length:
                    min_length = edges[i]['length']
                    min_length_index = i
            edges_to_remove.append(list(edges_index) + [min_length_index])
    print('found', len(edges_to_remove), 'parallel edges')
    streckennetz.remove_edges_from(edges_to_remove)

    # Remove nodes, that only have a single edge
    while True:
        nodes_to_remove = []
        for node in streckennetz.nodes():
            if streckennetz.degree(
                    node) < 2 and 'type' not in streckennetz.nodes[node]:
                nodes_to_remove.append(node)
        if nodes_to_remove:
            print('found', len(nodes_to_remove), 'deadend nodes')
            streckennetz.remove_nodes_from(nodes_to_remove)
            nodes_to_remove = []
        else:
            break
    return streckennetz
示例#38
0
def reward(g: nx.MultiGraph, edge: Tuple[int, int], const_amt: int, fee_type: str, fee: int = None) -> int:
    # debugging
    # print_flag = fee is not None

    u, v = edge
    if fee is not None:
        g.update_fee(u, v, fee, fee_type)
    else:
        fee = getattr(g.get_policy(u, v), fee_type)

    ebc = edge_betweenness(g, const_amt)[edge]

    # debugging
    # if print_flag:
    #     print('({:>3d}, {:>3d})  fee {:>9d}  ebc {:>9f}  '.format(
    #         u, v, fee, ebc), end='')

    return fee * ebc
示例#39
0
 def get_fbvs_max_size(self, g: MultiGraph, k: int) -> set:
     # we will run the algorithm 4^k times
     n = 4 ** k
     for _ in range (1, n):
         # pass a copy of g, since we need a fresh copy of g for every run
         sol = self._get_fbvs_max_size(g.copy(), k)
         if sol is not None:
             # we found a fbvs for (g,k), so we can return it right away
             return sol
     return None
示例#40
0
def graph_minus(g: MultiGraph, w: set) -> MultiGraph:
	gx = MultiGraph()
	for (n1, n2) in g.edges():
		if n1 not in w and n2 not in w:
			gx.add_edge(n1, n2)
	for n in g.nodes():
		if n not in w:
			gx.add_node(n)
	return gx
    def fvs_disjoint(self, g: MultiGraph, w: set, k: int) -> set:
        """
        Given an undirected graph G and a fbvs W in G of size at least (k + 1), is it possible to construct
        a fbvs X of size at most k using only the nodes of G - W?

        :return: The set X, or `None` if it's not possible to construct X
        """

        # If G[W] isn't a forest, then a solution X not using W can't remove W's cycles.
        if not is_acyclic(g.subgraph(w)):
            return None

        # Apply reductions exhaustively.
        k, soln_redux = self.apply_reductions(g, w, k)

        # If k becomes negative, it indicates that the reductions included
        # more than k nodes. In other word, reduction 2 shows that there are more than k nodes
        # in G - W that will create cycle in W. Hence, no solution of size <= k exists.
        if k < 0:
            return None

        # From now onwards we assume that k >= 0

        # If G has been reduced to nothing and k is >= 0 then the solution generated by the reductions
        # is already optimal.
        if len(g) == 0:
            return soln_redux

        # Recall that H is a forest as W is a feedback vertex set. Thus H has a node x of degree at most 1.
        # Find an x in H of degree at most 1.
        h = graph_minus(g, w)
        x = None
        for v in h.nodes():
            if h.degree(v) <= 1:
                x = v
                break
        assert x is not None, "There must be at least one node x of degree at most 1"

        # Branch on (G - {x}, W, k−1) and (G, W ∪ {x}, k)
        # G is copied in the left branch (as it is modified), but passed directly in the right.
        soln_left = self.fvs_disjoint(graph_minus(g, {x}), w, k - 1)

        if soln_left is not None:
            return soln_redux.union(soln_left).union({x})

        soln_right = self.fvs_disjoint(g, w.union({x}), k)

        if soln_right is not None:
            return soln_redux.union(soln_right)

        return None
示例#42
0
def reduction1(g: MultiGraph, w: set, h: MultiGraph, k: int) -> (int, int, bool):
	changed = False
	for v in g.nodes():
		if g.degree(v) <= 1:
			g.remove_node(v)
			h.remove_nodes_from([v])
			changed = True
	return (k, None, changed)
示例#43
0
def reduction2(g: MultiGraph, w: set, h: MultiGraph, k: int) -> (int, int, bool):
	for v in h.nodes():
		# Check if G[W ∪ {v}] contains a cycle.
		if not is_forest(g.subgraph(w.union({v}))):
			g.remove_node(v)
			h.remove_nodes_from([v])
			return (k - 1, v, True)
	return (k, None, False)
示例#44
0
def mif_preprocess_2(g: MultiGraph, f: set, active_v, k: int) -> set:
	mif_set = set()
	while not is_independent_set(g, f):
		mif_set = mif_set.union(f)
		for component in nxc.connected_components(g.subgraph(f)):
			if len(component) > 1:
				if active_v in component:
					active_v = component.pop()
					compressed_node = active_v
				else:
					compressed_node = component.pop()
				g = compress(g, component, compressed_node, True)
				f = f.intersection(g.nodes())
				# Maybe faster with
				# f = f.difference(component)
				# f.add(compressed_node)
				mif_set = mif_set.union(component)
				break
	mif_set2 = mif_main(g, f, active_v, k)
	if mif_set2:
		mif_set = mif_set2.union(mif_set)
	if k == None or len(mif_set) >= k:
		return mif_set
	return None
 def reduction1(self, g: MultiGraph, w: set, h: MultiGraph, k: int) -> (int, int, bool):
     """
     Delete all nodes of degree 0 or 1 as they can't be part of any cycles.
     """
     changed = False
     for v in g.nodes():
         if g.degree(v) <= 1:
             g.remove_node(v)
             h.remove_nodes_from([v])
             changed = True
     return k, None, changed
示例#46
0
def mif_preprocess_1(g: MultiGraph, f: set, active_v, k: int) -> set:
	if nxc.number_connected_components(g) >= 2:
		mif_set = set()
		for component in nxc.connected_components(g):
			f_i = component.intersection(f)
			gx = g.subgraph(component)
			component_mif_set = mif_preprocess_2(gx, f_i, active_v, None)
			if component_mif_set:
				mif_set = mif_set.union(component_mif_set)
				if k != None:
					k -= (len(component_mif_set) - len(f_i))
					if k <= 0:
						return mif_set
		if k == None or len(mif_set) >= k:
			return mif_set
		return None
	return mif_preprocess_2(g, f, active_v, k)
示例#47
0
def fvs_disjoint(g: MultiGraph, w: set, k: int) -> set:
	# Check that G[W] is a forest.
	# If it isn't, then a solution X not using W can't remove W's cycles.
	if not is_forest(g.subgraph(w)):
		return None

	# Apply reductions exhaustively.
	k, soln_redux = apply_reductions(g, w, k)

	# If k becomes negative, it indicates that the reductions included
	# more than k vertices, hence no solution of size <= k exists.
	if k < 0:
		return None

	# If G has been reduced to nothing and k is >= 0 then the solution generated by the reductions
	# is already optimal.
	if len(g) == 0:
		return soln_redux

	# Find an x in H of degree at most 1.
	h = graph_minus(g, w)
	x = None
	for v in h.nodes():
		if h.degree(v) <= 1:
			x = v
			break
	assert x is not None

	# Branch.
	# G is copied in the left branch (as it is modified), but passed directly in the right.
	soln_left = fvs_disjoint(graph_minus(g, {x}), w, k - 1)

	if soln_left is not None:
		return soln_redux.union(soln_left).union({x})

	soln_right = fvs_disjoint(g, w.union({x}), k)

	if soln_right is not None:
		return soln_redux.union(soln_right)

	return None
    def reduction2(self, g: MultiGraph, w: set, h: MultiGraph, k: int) -> (int, int, bool):
        """
        If there exists a node v in H such that G[W ∪ {v}]
        contains a cycle, then include v in the solution, delete v and decrease the
        parameter by 1. That is, the new instance is (G - {v}, W, k - 1).

        If v introduces a cycle, it must be part of X as none of the vertices in W
        will be available to neutralise this cycle.
        """
        for v in h.nodes():
            # Check if G[W ∪ {v}] contains a cycle.
            if not is_acyclic(g.subgraph(w.union({v}))):
                g.remove_node(v)
                h.remove_nodes_from([v])
                return k - 1, v, True
        return k, None, False
示例#49
0
 def test_bag():
     multigraph1 = MultiGraph()
     multigraph1.add_nodes_from(range(4))
     breakpoint_graph1 = BreakpointGraph(multigraph1)
     double_color = ['A', 'B']
     breakpoint_graph1.add_edge(0, 1, Multicolor(*double_color))
     breakpoint_graph1.add_edge(2, 3, Multicolor('A'))
     breakpoint_graph1.add_edge(1, 2, Multicolor('C'))
     breakpoint_graph1.add_edge(0, 3, Multicolor('D'))
     assert (len(find_bag_patterns(breakpoint_graph1)) == 1)
     multigraph2 = MultiGraph()
     multigraph2.add_nodes_from(range(4))
     breakpoint_graph2 = BreakpointGraph(multigraph2)
     double_color = ['A', 'B']
     breakpoint_graph2.add_edge(0, 1, Multicolor(*double_color))
     breakpoint_graph2.add_edge(2, 3, Multicolor('B'))
     breakpoint_graph2.add_edge(1, 2, Multicolor('C'))
     breakpoint_graph2.add_edge(0, 3, Multicolor('C'))
     assert (len(find_bag_patterns(breakpoint_graph2)) == 0)
示例#50
0
    def reduction4(self, g: MultiGraph, k: int) -> (int, List[int], bool):
        """
         If there is a vertex v of degree 2, delete v and connect its two neighbors by a new edge.
        """
        for v in g.nodes():
            if g.degree(v) == 2:
                # Delete v and make its neighbors adjacent.
                ne = g.neighbors(v)

                # We must check whether v has 2 neighbors, or just one but connected to v by multiple edges
                if len(ne) == 2:
                    [n1, n2] = ne
                else:
                    [n1] = ne
                    n2 = n1
                g.remove_node(v)

                # Only add the edge if there are currently less than 2 edges between these two nodes
                es = g[n1].get(n2, {})
                if len(es) < 2:
                    g.add_edge(n1, n2)
                return k, None, True
        return k, None, False
示例#51
0
def graph_minus_slow(g: MultiGraph, w: set) -> MultiGraph:
	gx = g.copy()
	gx.remove_nodes_from(w)
	return gx
class ShuttlingGraph(list):
    def __init__(self, shuttlingEdges=list() ):
        super(ShuttlingGraph, self).__init__(shuttlingEdges) 
        self.currentPosition = None
        self.currentPositionName = None
        self.nodeLookup = dict()
        self.currentPositionObservable = Observable()
        self.graphChangedObservable = Observable()
        self.initGraph()
        self._hasChanged = True
        
    def initGraph(self):
        self.shuttlingGraph = MultiGraph()
        for edge in self:
            self.shuttlingGraph.add_node(edge.startName)
            self.shuttlingGraph.add_node(edge.stopName)
            self.shuttlingGraph.add_edge(edge.startName, edge.stopName, key=hash(edge), edge=edge,
                                         weight=abs(edge.stopLine-edge.startLine))
            self.nodeLookup[edge.startLine] = edge.startName
            self.nodeLookup[edge.stopLine] = edge.stopName

    def rgenerateNodeLookup(self):
        self.nodeLookup.clear()
        for edge in self:
            self.nodeLookup[edge.startLine] = edge.startName
            self.nodeLookup[edge.stopLine] = edge.stopName

    @property
    def hasChanged(self):
        return self._hasChanged
    
    @hasChanged.setter
    def hasChanged(self, value):
        self._hasChanged = value
            
    def position(self, line):
        return self.nodeLookup.get(line)
    
    def setPosition(self, line):
        if self.currentPosition!=line:
            self.currentPosition = line
            self.currentPositionName = self.position(line)
            self.currentPositionObservable.fire( line=line, text=firstNotNone(self.currentPositionName, "") )

    def getMatchingPosition(self,graph):
        """Try to match node name/position to the current settings in the provided ShuttlingGraph."""
        if not graph:
            return self.currentPosition # no change
        # Matching node name. Need to set the corresponding position
        for edge in self:
            if edge.startName == graph.currentPositionName:
                return edge.startLine
            if edge.stopName == graph.currentPositionName:
                return edge.stopLine
        #if graph.currentPosition:
        #    return graph.currentPosition #just use the graph's position
        return self.currentPosition

    def addEdge(self, edge):
        self._hasChanged = True
        self.append(edge)
        self.shuttlingGraph.add_edge(edge.startName, edge.stopName, key=hash(edge), edge=edge, weight=abs(edge.stopLine-edge.startLine))
        self.nodeLookup[edge.startLine] = edge.startName
        self.nodeLookup[edge.stopLine] = edge.stopName
        self.graphChangedObservable.firebare()
        self.setPosition(self.currentPosition)
            
    def isValidEdge(self, edge):
        return ((edge.startLine not in self.nodeLookup or self.nodeLookup[edge.startLine] == edge.startName)
                and (edge.stopLine not in self.nodeLookup or self.nodeLookup[edge.stopLine] == edge.stopName))
        
    def getValidEdge(self):
        index = 0
        while self.shuttlingGraph.has_node("Start_{0}".format(index)):
            index += 1
        startName = "Start_{0}".format(index)
        index = 0
        while self.shuttlingGraph.has_node("Stop_{0}".format(index)):
            index += 1
        stopName = "Stop_{0}".format(index)
        index = 0
        startLine = (max( self.nodeLookup.keys() )+1) if self.nodeLookup else 1
        stopLine = startLine + 1
        return ShuttleEdge(startName, stopName, startLine, stopLine, 0, 0, 0, 0)
    
    def removeEdge(self, edgeno):
        self._hasChanged = True
        edge = self.pop(edgeno)
        self.shuttlingGraph.remove_edge(edge.startName, edge.stopName, hash(edge))
        if self.shuttlingGraph.degree(edge.startName) == 0:
            self.shuttlingGraph.remove_node(edge.startName)
        if self.shuttlingGraph.degree(edge.stopName) == 0:
            self.shuttlingGraph.remove_node(edge.stopName)
        self.graphChangedObservable.firebare()
        self.rgenerateNodeLookup()
        self.setPosition(self.currentPosition)
    
    def setStartName(self, edgeno, startName):
        self._hasChanged = True
        startName = str(startName)
        edge = self[edgeno]
        if edge.startName != startName:
            self.shuttlingGraph.remove_edge(edge.startName, edge.stopName, key=hash(edge))
            if self.shuttlingGraph.degree(edge.startName) == 0:
                self.shuttlingGraph.remove_node(edge.startName)
            edge.startName = startName
            self.shuttlingGraph.add_edge(edge.startName, edge.stopName, key=hash(edge), edge=edge,
                                         weight=abs(edge.stopLine-edge.startLine) )
            self.graphChangedObservable.firebare()
            self.setPosition(self.currentPosition)
            self.rgenerateNodeLookup()
        return True
    
    def setStopName(self, edgeno, stopName):
        self._hasChanged = True
        stopName = str(stopName)
        edge = self[edgeno]
        if edge.stopName != stopName:
            self.shuttlingGraph.remove_edge(edge.startName, edge.stopName, key=hash(edge))
            if self.shuttlingGraph.degree(edge.stopName) == 0:
                self.shuttlingGraph.remove_node(edge.stopName)
            edge.stopName = stopName
            self.shuttlingGraph.add_edge(edge.startName, edge.stopName, key=hash(edge), edge=edge,
                                         weight=abs(edge.stopLine-edge.startLine) )
            self.graphChangedObservable.firebare()
            self.rgenerateNodeLookup()
            self.setPosition(self.currentPosition)
        return True
    
    def setStartLine(self, edgeno, startLine):
        self._hasChanged = True
        edge = self[edgeno]
        if startLine != edge.startLine and (startLine not in self.nodeLookup or self.nodeLookup[startLine] == edge.startName):
            self.nodeLookup.pop(edge.startLine)
            edge.startLine = startLine
            self.shuttlingGraph.edge[edge.startName][edge.stopName][hash(edge)]['weight'] = abs(edge.stopLine-edge.startLine)
            self.rgenerateNodeLookup()
            self.graphChangedObservable.firebare()
            self.setPosition(self.currentPosition)
            return True    
        return False  
    
    def setStopLine(self, edgeno, stopLine):
        self._hasChanged = True
        edge = self[edgeno]
        if stopLine != edge.stopLine and (stopLine not in self.nodeLookup or self.nodeLookup[stopLine] == edge.stopName):
            self.nodeLookup.pop(edge.stopLine)
            edge.stopLine = stopLine
            self.shuttlingGraph.edge[edge.startName][edge.stopName][hash(edge)]['weight'] = abs(edge.stopLine-edge.startLine)
            self.rgenerateNodeLookup()
            self.graphChangedObservable.firebare()
            self.setPosition(self.currentPosition)
            return True  
        return False
    
    def setIdleCount(self, edgeno, idleCount):
        self._hasChanged = True
        self[edgeno].idleCount = idleCount
        return True      

    def setSteps(self, edgeno, steps):
        self._hasChanged = True
        self[edgeno].steps = steps
        return True      
    
    def shuttlePath(self, fromName, toName ):
        fromName = firstNotNone(fromName, self.currentPositionName)
        fromName = fromName if fromName else self.position(float(self.currentPosition))
        if fromName not in self.shuttlingGraph:
            raise ShuttlingGraphException("Shuttling failed, origin '{0}' is not a valid shuttling node".format(fromName))
        if toName not in self.shuttlingGraph:
            raise ShuttlingGraphException("Shuttling failed, target '{0}' is not a valid shuttling node".format(toName))
        sp = shortest_path(self.shuttlingGraph, fromName, toName)
        path = list()
        for a, b in pairs_iter(sp):
            edge = sorted(self.shuttlingGraph.edge[a][b].values(), key=itemgetter('weight'))[0]['edge']
            path.append((a, b, edge, self.index(edge)))
        return path
    
    def nodes(self):
        return self.shuttlingGraph.nodes()
    
    def toXmlElement(self, root):
        mydict = dict( ( (key, str(getattr(self, key))) for key in ('currentPosition', 'currentPositionName') if getattr(self, key) is not None  ) ) 
        myElement = ElementTree.SubElement(root, "ShuttlingGraph", attrib=mydict )
        for edge in self:
            edge.toXmlElement( myElement )
        return myElement
    
    def setStartType(self, edgeno, Type):
        self._hasChanged = True
        self[edgeno].startType = str(Type)
        return True
    
    def setStopType(self, edgeno, Type):
        self._hasChanged = True
        self[edgeno].stopType = str(Type)
        return True
    
    def setStartLength(self, edgeno, length):
        edge = self[edgeno]
        if length!=edge.startLength:
            if length+edge.stopLength<edge.sampleCount:
                self._hasChanged = True
                edge.startLength = int(length)
            else:
                return False
        return True
    
    def setStopLength(self, edgeno, length):
        edge = self[edgeno]
        if length!=edge.stopLength:
            if edge.startLength+length<edge.sampleCount:
                self._hasChanged = True
                edge.stopLength = int(length)
            else:
                return False
        return True
    
    @staticmethod
    def fromXmlElement( element ):
        edgeElementList = element.findall("ShuttleEdge")
        edgeList = [ ShuttleEdge.fromXmlElement(e) for e in edgeElementList ]
        return ShuttlingGraph(edgeList)
示例#53
0
def fvs_via_mif(g: MultiGraph, k: int) -> set:
	mif_set = mif(g, g.order()-k)
	if mif_set:
		nodes = set(g.nodes())
		mif_set = nodes.difference(mif_set)
	return mif_set
示例#54
0
for n in N:
	f.write(str(round(my_data[n][0])) + " ")
	f.write(str(round(my_data[n][1])) + " ")
	f.write(str(round(my_data[n][2])))
	f.write("\n")
f.close()

fh = open("trash","w")
call(["./blossom4","-3", "-x","data.dat", "-w", "output.dat"], stdout=fh)
fh.close()

result = genfromtxt('output.dat', delimiter=' ', usecols = (0, 1))
result = result[1:]
#MINMAXMATCHING END

H = MultiGraph()
H.add_nodes_from(T.nodes())
H.add_edges_from(T.edges())
for (key, value) in a.items():
	if N < N:
		H.add_edge(N, N)

t = Set()
for (i, j) in eulerian_circuit(H):
	if i in t:
		continue
	t.add(i)
	print i

#the result is t
#t_e = zip(t[:-1], t[1:])
示例#55
0
def is_independent_set(g: MultiGraph, f: set) -> bool:
	for edge in itertools.combinations(f, 2):
		if g.has_edge(edge[0], edge[1]):
			return False
	return True
 def reduction3(self, g: MultiGraph, w: set, h: MultiGraph, k: int) -> (int, int, bool):
     """
     If there is a node v ∈ V(H) of degree 2 in G such
     that at least one neighbor of v in G is from V (H), then delete this node
     and make its neighbors adjacent (even if they were adjacent before; the graph
     could become a multigraph now).
     """
     for v in h.nodes():
         if g.degree(v) == 2:
             # If v has a neighbour in H, short-curcuit it.
             if len(h[v]) >= 1:
                 # Delete v and make its neighbors adjacent.
                 [n1, n2] = g.neighbors(v)
                 g.remove_node(v)
                 g.add_edge(n1, n2)
                 # Update H accordingly.
                 h.remove_nodes_from([v])
                 if n1 not in w and n2 not in w:
                     h.add_edge(n1, n2)
                 return k, None, True
     return k, None, False
示例#57
0
文件: convert.py 项目: hardwood89/fs
basename = splitext(basename(sys.argv[1]))[0]
random.seed(1)

print "Reading {}, writing {}".format(sys.argv[1], outname)

graph = read_gml(sys.argv[1])
hsubspec = "flowsize=exponential(1/10000.0) flowstart=exponential(100) ipproto=randomchoice(6) sport=randomchoice(22,80,443) dport=randomunifint(1025,65535) lossrate=randomchoice(0.001)"

mnodes = add_measurement(graph)

newgraph = MultiGraph(name=basename, 
                      counterexportfile=basename+"_counters", 
                      flowexport="text",
                      flowsampling=1.0,
                      pktsampling=1.0,
                      exportcycle=60,
                      counterexport=True,
                      counterexportinterval=1,
                      longflowtmo=60,
                      flowinactivetmo=60,
                      harpoonsubspec=hsubspec,
                      measurementnodes=mnodes)

def get_cap(label):
    if 'OC192/STM64' in label:
        return '10Gb'
    elif 'OC3' in label:
        return '155Mb'
    elif 'OC12' in label:
        return '622Mb'
    elif 'OC48' in label:
        return '2.4Gb'
示例#58
0
for n in N:
	f.write(str(round(my_data[n][0])) + " ")
	f.write(str(round(my_data[n][1])) + " ")
	f.write(str(round(my_data[n][2])))
	f.write("\n")
f.close()

fh = open("trash.dat","w")
call(["./blossom4","-3", "-x","data.dat", "-w", "output.dat"], stdout=fh)
fh.close()

result = genfromtxt('output.dat', delimiter=' ', usecols = (0, 1))
result = result[1:]
#MINMAXMATCHING END

H = MultiGraph()
H.add_nodes_from(T.nodes())
H.add_edges_from(T.edges())
for (key, value) in result:
	H.add_edge(N[int(key)], N[int(value)])

f = open("data.dat", "wb")
t = Set()
for (i, j) in eulerian_circuit(H):
	if i in t:
		continue
	t.add(i)
	f.write(str(i) + " ")
f.close()

fh = open("trash.dat", "w")
示例#59
0
def reduction3(g: MultiGraph, w: set, h: MultiGraph, k: int) -> (int, int, bool):
	for v in h.nodes():
		if g.degree(v) == 2:
			# If v has a neighbour in H, short-curcuit it.
			if len(h[v]) >= 1:
				# Delete v and make its neighbors adjacent.
				[n1, n2] = g.neighbors(v)
				g.remove_node(v)
				g.add_edge(n1, n2)
				# Update H accordingly.
				h.remove_nodes_from([v])
				if n1 not in w and n2 not in w:
					h.add_edge(n1, n2)
				return (k, None, True)
	return (k, None, False)