def test_handle_errors(self): with self.assertRaises(ValueError): # Wrong: size of target data not the same as size of # input data. GRNN().train( np.array([[0], [0]]), np.array([0]) ) with self.assertRaises(ValueError): # Wrong: 2-D target vector (must be 1-D) GRNN().train( np.array([[0], [0]]), np.array([[0]]) ) with self.assertRaises(AttributeError): # Wrong: can't use iterative learning process for this # algorithm GRNN().train_epoch() with self.assertRaises(ValueError): # Wrong: invalid feature size for prediction data grnet = GRNN() grnet.train(np.array([[0], [0]]), np.array([0])) grnet.predict(np.array([[0]]))
def build_model2(std, train_size, t, x): train_size = int(t.shape[0] * train_size) # X_train = t[:train_size] # y_train = x[:train_size] # X_test = t[train_size:] # y_test = x[train_size:] X_train, X_test, y_train, y_test = train_test_split(t, x, train_size=train_size, shuffle=True, random_state=14) scaler_x = StandardScaler() scaler_y = StandardScaler() tmp_train_scaled_x = scaler_x.fit_transform(X_train[:, np.newaxis]) tmp_test_scaled_x = scaler_x.transform(X_test[:, np.newaxis]) tmp_train_scaled_y = scaler_y.fit_transform(y_train[:, np.newaxis]) grnn = GRNN(std=std) grnn.fit(tmp_train_scaled_x, tmp_train_scaled_y) pred_x = grnn.predict(tmp_train_scaled_x) pred_x = scaler_y.inverse_transform(pred_x) mse = mean_squared_error(y_train, pred_x.flatten()) print(f'RMSE = {np.sqrt(mse)}') plt.plot(t, x, c='r') plt.scatter(X_train, y_train, label='train') plt.scatter(X_train, pred_x, label='predict') plt.legend() plt.show() pred_x = grnn.predict(tmp_test_scaled_x) pred_x = scaler_y.inverse_transform(pred_x) mse = mean_squared_error(y_test, pred_x.flatten()) print(f'RMSE = {np.sqrt(mse)}') plt.plot(t, x, c='r') plt.scatter(X_test, y_test, label='test') plt.scatter(X_test, pred_x, label='predict') plt.legend() plt.show()
def test_simple_grnn(self): dataset = datasets.load_diabetes() x_train, x_test, y_train, y_test = train_test_split( dataset.data, dataset.target, train_size=0.7, random_state=0 ) nw = GRNN(standard_deviation=0.1) nw.train(x_train, y_train) result = nw.predict(x_test) error = rmsle(result, y_test) self.assertAlmostEqual(error, 0.4245, places=4)
df_cluster = X_train df_cluster[ 'Grade'] = Y_train #Reproduce original data but only with training values rbfk_net = RBFKMeans( n_clusters=prototypes) #Chose number of clusters that you want rbfk_net.train(df_cluster, epsilon=1e-5) center = pd.DataFrame(rbfk_net.centers) # Turn the centers into prototypes values needed X_prototypes = center.iloc[:, 0:-1] Y_prototypes = center.iloc[:, -1] #Y_prototypes is the last column of center since 'Grade' is the last feature added to center. #Train GRNN GRNNet = GRNN(std=0.1) GRNNet.train(X_prototypes, Y_prototypes) # Cross validataion score = cross_val_score(GRNNet, X_train, Y_train, scoring='r2', cv=5) print("") print("Cross Validation: {0} (+/- {1})".format(score.mean().round(2), (score.std() * 2).round(2))) print("") #Prediction Y_predict = GRNNet.predict(X) print(Y.values * minmax + minval) print((Y_predict * minmax + minval)[:, 0].round(2)) print("") print("Accuracy: {0}".format(metrics.r2_score(Y, Y_predict).round(2))) print("")