示例#1
0
文件: test_utils.py 项目: disc5/neupy
    def test_shuffle(self):
        input_data = np.arange(10)
        shuffeled_data = shuffle(input_data, input_data)
        np.testing.assert_array_equal(*shuffeled_data)

        np.testing.assert_array_equal(tuple(), shuffle())

        with self.assertRaises(ValueError):
            shuffle(input_data, input_data[:len(input_data) - 1])
示例#2
0
    def test_shuffle(self):
        input_data = np.arange(10)
        shuffeled_data = shuffle(input_data, input_data)
        np.testing.assert_array_equal(*shuffeled_data)

        np.testing.assert_array_equal(tuple(), shuffle())

        with self.assertRaises(ValueError):
            shuffle(input_data, input_data[:len(input_data) - 1])
示例#3
0
def make_reber_classification(n_samples, invalid_size=0.5):
    """
    Generate random dataset for Reber grammar classification.
    Invalid words contains the same letters as at Reber grammar, but
    they are build whithout grammar rules.

    Parameters
    ----------
    n_samples : int
        Number of samples in dataset.
    invalid_size : float
        Proportion of invalid words in dataset, defaults to `0.5`. Value
        must be between 0 and 1, but not equal to them.

    Returns
    -------
    tuple
        Return two lists. First contains words and second - labels for them.

    Examples
    --------
    >>> from neupy.datasets import make_reber_classification
    >>>
    >>> data, labels = make_reber_classification(10, invalid_size=0.5)
    >>> data
    array(['SXSXVSXXVX', 'VVPS', 'VVPSXTTS', 'VVS', 'VXVS', 'VVS',
           'PPTTTXPSPTV', 'VTTSXVPTXVXT', 'VSSXSTX', 'TTXVS'],
          dtype='<U12')
    >>> labels
    array([0, 1, 0, 1, 1, 1, 0, 0, 0, 1])
    """
    if n_samples < 2:
        raise ValueError("There are must be at least 2 samples.")

    if invalid_size <= 0 or invalid_size >= 1:
        raise ValueError("`invalid_size` property must be between zero and"
                         "one, but not equal.")

    n_valid_words = int(math.ceil(n_samples * invalid_size))
    n_invalid_words = n_samples - n_valid_words

    valid_words = make_reber(n_valid_words)
    valid_labels = [1] * n_valid_words

    invalid_words = []
    invalid_labels = [0] * n_valid_words

    for i in range(n_invalid_words):
        word_length = randint(3, 14)
        word = [choice(avaliable_letters) for _ in range(word_length)]
        invalid_words.append(''.join(word))

    return shuffle(np.array(valid_words + invalid_words),
                   np.array(valid_labels + invalid_labels))
示例#4
0
文件: reber.py 项目: Neocher/neupy
def make_reber_classification(n_samples, invalid_size=0.5):
    """ Generate random dataset for Reber grammar classification.
    Invalid words contains the same letters as at Reber grammar, but
    they are build whithout grammar rules.

    Parameters
    ----------
    n_samples : int
        Number of samples in dataset.
    invalid_size : float
        Proportion of invalid words in dataset, defaults to `0.5`. Value
        must be between 0 and 1, but not equal to them.

    Returns
    -------
    tuple
        Return two lists. First contains words and second - labels for them.

    Examples
    --------
    >>> from neupy.datasets import make_reber_classification
    >>>
    >>> data, labels = make_reber_classification(10, invalid_size=0.5)
    >>> data
    array(['SXSXVSXXVX', 'VVPS', 'VVPSXTTS', 'VVS', 'VXVS', 'VVS',
           'PPTTTXPSPTV', 'VTTSXVPTXVXT', 'VSSXSTX', 'TTXVS'],
          dtype='<U12')
    >>> labels
    array([0, 1, 0, 1, 1, 1, 0, 0, 0, 1])
    """
    if n_samples < 2:
        raise ValueError("There are must be at least 2 samples.")

    if invalid_size <= 0 or invalid_size >= 1:
        raise ValueError("`invalid_size` property must be between zero and" "one, but not equal.")

    n_valid_words = int(math.ceil(n_samples * invalid_size))
    n_invalid_words = n_samples - n_valid_words

    valid_words = make_reber(n_valid_words)
    valid_labels = [1] * n_valid_words

    invalid_words = []
    invalid_labels = [0] * n_valid_words

    for i in range(n_invalid_words):
        word_length = randint(3, 14)
        word = [choice(avaliable_letters) for _ in range(word_length)]
        invalid_words.append("".join(word))

    return shuffle(np.array(valid_words + invalid_words), np.array(valid_labels + invalid_labels))