def atlas_overlap(dset, atlas=None): '''aligns ``dset`` to the TT_N27 atlas and returns ``(cost,overlap)``''' atlas = find_atlas(atlas) if atlas == None: return None cost_func = 'crM' infile = os.path.abspath(dset) tmpdir = tempfile.mkdtemp() with nl.run_in(tmpdir): o = nl.run([ '3dAllineate', '-verb', '-base', atlas, '-source', infile + '[0]', '-NN', '-final', 'NN', '-cost', cost_func, '-nmatch', '20%', '-onepass', '-fineblur', '2', '-cmass', '-prefix', 'test.nii.gz' ]) m = re.search(r'Final\s+cost = ([\d.]+) ;', o.output) if m: cost = float(m.group(1)) o = nl.run(['3dmaskave', '-mask', atlas, '-q', 'test.nii.gz'], stderr=None) data_thresh = float(o.output) / 4 i = nl.dset_info('test.nii.gz') o = nl.run([ '3dmaskave', '-q', '-mask', 'SELF', '-sum', nl.calc([atlas, 'test.nii.gz'], 'equals(step(a-10),step(b-%.2f))' % data_thresh) ], stderr=None) overlap = 100 * float( o.output) / (i.voxel_dims[0] * i.voxel_dims[1] * i.voxel_dims[2]) try: shutil.rmtree(tmpdir) except: pass return (cost, overlap)
def skullstrip_template(dset, template, prefix=None, suffix=None, dilate=0): '''Takes the raw anatomy ``dset``, aligns it to a template brain, and applies a templated skullstrip. Should produce fairly reliable skullstrips as long as there is a decent amount of normal brain and the overall shape of the brain is normal-ish''' if suffix == None: suffix = '_sstemplate' if prefix == None: prefix = nl.suffix(dset, suffix) if not os.path.exists(prefix): with nl.notify('Running template-based skull-strip on %s' % dset): dset = os.path.abspath(dset) template = os.path.abspath(template) tmp_dir = tempfile.mkdtemp() cwd = os.getcwd() with nl.run_in(tmp_dir): nl.affine_align(template, dset, skull_strip=None, cost='mi', opts=['-nmatch', '100%']) nl.run([ '3dQwarp', '-minpatch', '20', '-penfac', '10', '-noweight', '-source', nl.suffix(template, '_aff'), '-base', dset, '-prefix', nl.suffix(template, '_qwarp') ], products=nl.suffix(template, '_qwarp')) info = nl.dset_info(nl.suffix(template, '_qwarp')) max_value = info.subbricks[0]['max'] nl.calc([dset, nl.suffix(template, '_qwarp')], 'a*step(b-%f*0.05)' % max_value, prefix) shutil.move(prefix, cwd) shutil.rmtree(tmp_dir)
def commit_database(wait=True): '''database is stored as distributed jsons that are tracked by git -- this saves a new commit''' with nl.run_in(p.padre_root): if not os.path.exists('.git'): subprocess.check_call(['git','init']) with open('.gitignore','w') as f: f.write('\n'.join(_git_ignore)) proc = subprocess.Popen(['git','add'] + glob.glob('Data/*/*.%s' % p.json_ext),stdout=subprocess.PIPE,stderr=subprocess.PIPE) proc.wait() proc = subprocess.Popen(['git','commit','-am','library commit'],stdout=subprocess.PIPE,stderr=subprocess.PIPE) if wait: proc.wait()
def commit_database(wait=True): '''database is stored as distributed jsons that are tracked by git -- this saves a new commit''' with nl.run_in(p.padre_root): if not os.path.exists('.git'): subprocess.check_call(['git', 'init']) with open('.gitignore', 'w') as f: f.write('\n'.join(_git_ignore)) proc = subprocess.Popen(['git', 'add'] + glob.glob('Data/*/*.%s' % p.json_ext), stdout=subprocess.PIPE, stderr=subprocess.PIPE) proc.wait() proc = subprocess.Popen(['git', 'commit', '-am', 'library commit'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) if wait: proc.wait()
def reconstruct_files(input_dir): '''sorts ``input_dir`` and tries to reconstruct the subdirectories found''' input_dir = input_dir.rstrip('/') with nl.notify('Attempting to organize/reconstruct directory'): # Some datasets start with a ".", which confuses many programs for r,ds,fs in os.walk(input_dir): for f in fs: if f[0]=='.': shutil.move(os.path.join(r,f),os.path.join(r,'i'+f)) nl.dicom.organize_dir(input_dir) output_dir = '%s-sorted' % input_dir if os.path.exists(output_dir): with nl.run_in(output_dir): for dset_dir in os.listdir('.'): with nl.notify('creating dataset from %s' % dset_dir): nl.dicom.create_dset(dset_dir) else: nl.notify('Warning: failed to auto-organize directory %s' % input_dir,level=nl.level.warning)
def reconstruct_files(input_dir): '''sorts ``input_dir`` and tries to reconstruct the subdirectories found''' input_dir = input_dir.rstrip('/') with nl.notify('Attempting to organize/reconstruct directory'): # Some datasets start with a ".", which confuses many programs for r, ds, fs in os.walk(input_dir): for f in fs: if f[0] == '.': shutil.move(os.path.join(r, f), os.path.join(r, 'i' + f)) nl.dicom.organize_dir(input_dir) output_dir = '%s-sorted' % input_dir if os.path.exists(output_dir): with nl.run_in(output_dir): for dset_dir in os.listdir('.'): with nl.notify('creating dataset from %s' % dset_dir): nl.dicom.create_dset(dset_dir) else: nl.notify('Warning: failed to auto-organize directory %s' % input_dir, level=nl.level.warning)
def skullstrip_template(dset,template,prefix=None,suffix=None,dilate=0): '''Takes the raw anatomy ``dset``, aligns it to a template brain, and applies a templated skullstrip. Should produce fairly reliable skullstrips as long as there is a decent amount of normal brain and the overall shape of the brain is normal-ish''' if suffix==None: suffix = '_sstemplate' if prefix==None: prefix = nl.suffix(dset,suffix) if not os.path.exists(prefix): with nl.notify('Running template-based skull-strip on %s' % dset): dset = os.path.abspath(dset) template = os.path.abspath(template) tmp_dir = tempfile.mkdtemp() cwd = os.getcwd() with nl.run_in(tmp_dir): nl.affine_align(template,dset,skull_strip=None,cost='mi',opts=['-nmatch','100%']) nl.run(['3dQwarp','-minpatch','20','-penfac','10','-noweight','-source',nl.suffix(template,'_aff'),'-base',dset,'-prefix',nl.suffix(template,'_qwarp')],products=nl.suffix(template,'_qwarp')) info = nl.dset_info(nl.suffix(template,'_qwarp')) max_value = info.subbricks[0]['max'] nl.calc([dset,nl.suffix(template,'_qwarp')],'a*step(b-%f*0.05)'%max_value,prefix) shutil.move(prefix,cwd) shutil.rmtree(tmp_dir)
def unpack_archive(fname, out_dir): '''unpacks the archive file ``fname`` and reconstructs datasets into ``out_dir`` Datasets are reconstructed and auto-named using :meth:`create_dset`. The raw directories that made the datasets are archive with the dataset name suffixed by ``tgz``, and any other files found in the archive are put into ``other_files.tgz``''' with nl.notify('Unpacking archive %s' % fname): tmp_dir = tempfile.mkdtemp() tmp_unpack = os.path.join(tmp_dir, 'unpack') os.makedirs(tmp_unpack) nl.utils.unarchive(fname, tmp_unpack) reconstruct_files(tmp_unpack) out_dir = os.path.abspath(out_dir) if not os.path.exists(out_dir): os.makedirs(out_dir) if not os.path.exists(tmp_unpack + '-sorted'): return with nl.run_in(tmp_unpack + '-sorted'): for fname in glob.glob('*.nii'): nl.run(['gzip', fname]) for fname in glob.glob('*.nii.gz'): new_file = os.path.join(out_dir, fname) if not os.path.exists(new_file): shutil.move(fname, new_file) raw_out = os.path.join(out_dir, 'raw') if not os.path.exists(raw_out): os.makedirs(raw_out) for rawdir in os.listdir('.'): rawdir_tgz = os.path.join(raw_out, rawdir + '.tgz') if not os.path.exists(rawdir_tgz): with tarfile.open(rawdir_tgz, 'w:gz') as tgz: tgz.add(rawdir) if len(os.listdir(tmp_unpack)) != 0: # There are still raw files left with tarfile.open(os.path.join(raw_out, 'other_files.tgz'), 'w:gz') as tgz: tgz.add(tmp_unpack) shutil.rmtree(tmp_dir)
def unpack_archive(fname,out_dir): '''unpacks the archive file ``fname`` and reconstructs datasets into ``out_dir`` Datasets are reconstructed and auto-named using :meth:`create_dset`. The raw directories that made the datasets are archive with the dataset name suffixed by ``tgz``, and any other files found in the archive are put into ``other_files.tgz``''' with nl.notify('Unpacking archive %s' % fname): tmp_dir = tempfile.mkdtemp() tmp_unpack = os.path.join(tmp_dir,'unpack') os.makedirs(tmp_unpack) nl.utils.unarchive(fname,tmp_unpack) reconstruct_files(tmp_unpack) out_dir = os.path.abspath(out_dir) if not os.path.exists(out_dir): os.makedirs(out_dir) if not os.path.exists(tmp_unpack+'-sorted'): return with nl.run_in(tmp_unpack+'-sorted'): for fname in glob.glob('*.nii'): nl.run(['gzip',fname]) for fname in glob.glob('*.nii.gz'): new_file = os.path.join(out_dir,fname) if not os.path.exists(new_file): shutil.move(fname,new_file) raw_out = os.path.join(out_dir,'raw') if not os.path.exists(raw_out): os.makedirs(raw_out) for rawdir in os.listdir('.'): rawdir_tgz = os.path.join(raw_out,rawdir+'.tgz') if not os.path.exists(rawdir_tgz): with tarfile.open(rawdir_tgz,'w:gz') as tgz: tgz.add(rawdir) if len(os.listdir(tmp_unpack))!=0: # There are still raw files left with tarfile.open(os.path.join(raw_out,'other_files.tgz'),'w:gz') as tgz: tgz.add(tmp_unpack) shutil.rmtree(tmp_dir)
def import_archive(full_file, subject_guess, slice_order='alt+z', sort_order='zt'): tmp_dir = tempfile.mkdtemp() try: padre_dir = full_file.replace(import_location, "PADRE/Import") tmp_location = os.path.join(tmp_dir, '_tmp_unarchive') out_dir = os.path.join(processed_location, subject_guess) for d in [tmp_location, tmp_location + '-sorted']: if os.path.exists(d): shutil.rmtree(d) import_log[padre_dir] = {'modified': os.path.getmtime(full_file)} if nl.is_archive(full_file): with nl.notify('uncompressing files...'): os.makedirs(tmp_location) nl.unarchive(full_file, tmp_location) else: with nl.notify('copying files...'): shutil.copytree(full_file, tmp_location) with nl.notify('sorting files...'): nl.dicom.organize_dir(tmp_location) dsets_made = {} if os.path.exists(tmp_location + '-sorted'): if not os.path.exists(os.path.join(out_dir, 'raw')): os.makedirs(os.path.join(out_dir, 'raw')) with nl.run_in(tmp_location + '-sorted'): for subdir in os.listdir('.'): if 'dset_ignore_masks' in dir(c): ignore = False for m in c.dset_ignore_masks: if m in subdir: ignore = True if ignore: continue nl.notify('creating dataset from %s' % subdir) import_log[padre_dir][subdir] = {} if not nl.dicom.create_dset(subdir, slice_order, sort_order): import_log[padre_dir][subdir]['error'] = True if os.path.exists(subdir + '.nii.gz'): import_log[padre_dir][subdir]['complete'] = True shutil.move(subdir + '.nii.gz', os.path.join(out_dir, subdir + '.nii.gz')) session_name = subdir.split('-')[1] if session_name not in dsets_made: dsets_made[session_name] = [] dsets_made[session_name].append( os.path.join(out_dir, subdir + '.nii.gz')) if 'complete' in import_log[padre_dir][ subdir] and import_log[padre_dir][subdir][ 'complete']: if 'error' in import_log[padre_dir][ subdir] and import_log[padre_dir][subdir][ 'error']: nl.notify( 'created dataset %s, but Dimon returned an error' % (subdir + '.nii.gz'), nl.level.error) else: nl.notify('successfully created dataset %s' % (subdir + '.nii.gz')) else: nl.notify( 'failed to create dataset from directory %s' % subdir, level=nl.level.error) nl.notify('moving raw data...') raw_data = [] for subdir in os.listdir(tmp_location + '-sorted'): out_file = os.path.join(out_dir, 'raw', subdir + '.tgz') if not os.path.exists(out_file): try: with tarfile.open(out_file, 'w:gz') as tgz: tgz.add( os.path.join(tmp_location + '-sorted', subdir)) except tarfile.TarError: nl.notify( 'Error creating compressed raw directory %s' % out_file, level=nl.level.error) else: raw_data.append(subdir + '.tgz') for r, ds, fs in os.walk(tmp_location): for f in fs: out_file = os.path.join(out_dir, 'raw', 'unsorted', r.lstrip(tmp_location).lstrip('/'), f) if not os.path.exists(out_file): if not os.path.exists(os.path.dirname(out_file)): os.makedirs(os.path.dirname(out_file)) shutil.move(os.path.join(r, f), out_file) raw_data.append( os.path.join('unsorted', r.lstrip(tmp_location).lstrip('/'), f)) nl.notify('importing into padre...') for session in dsets_made: p.maint.import_to_padre(subject_guess, session, dsets_made[session], raw_data, out_dir) else: nl.notify('didn\'t find any files...') finally: shutil.rmtree(tmp_dir, True) save_log() return dsets_made
def _create_dset_dicom(directory, slice_order='alt+z', sort_order=None, force_slices=None): tags = { 'num_rows': (0x0028, 0x0010), 'num_reps': (0x0020, 0x0105), 'num_frames': (0x0028, 0x0008), 'acq_time': (0x0008, 0x0032), 'siemens_slices': (0x0019, 0x100a), 'TR': (0x0018, 0x0080) } with nl.notify('Trying to create datasets from %s' % directory): directory = os.path.abspath(directory) if not os.path.exists(directory): nl.notify('Error: could not find %s' % directory, level=nl.level.error) return False out_file = '%s.nii.gz' % nl.prefix(os.path.basename(directory)) if os.path.exists(out_file): nl.notify('Error: file "%s" already exists!' % out_file, level=nl.level.error) return False cwd = os.getcwd() sorted_dir = tempfile.mkdtemp() try: with nl.run_in(sorted_dir): file_list = glob.glob(directory + '/*') num_reps = None new_file_list = [] for f in file_list: try: if len(info_for_tags(f, tags['num_rows'])) > 0: # Only include DICOMs that actually have image information new_file_list.append(f) except: pass file_list = new_file_list if len(file_list) == 0: nl.notify('Error: Couldn\'t find any valid DICOM images', level=nl.level.error) return False with open('file_list.txt', 'w') as f: f.write('\n'.join(file_list)) try: subprocess.check_output([ 'Dimon', '-infile_list', 'file_list.txt', '-dicom_org', '-save_details', 'details', '-max_images', '100000', '-fast', '-no_wait', '-quit' ], stderr=subprocess.STDOUT) except subprocess.CalledProcessError, e: nl.notify( 'Warning: Dimon returned an error while sorting images', level=nl.level.warning) else: if os.path.exists('details.2.final_list.txt'): with open('details.2.final_list.txt') as f: details = [ x.strip().split() for x in f.readlines() if x[0] != '#' ] file_list = [x[0] for x in details] else: nl.notify( 'Warning: Dimon didn\'t return expected output, unable to sort images', level=nl.level.warning)
def _create_dset_dicom(directory,slice_order='alt+z',sort_order=None,force_slices=None): tags = { 'num_rows': (0x0028,0x0010), 'num_reps': (0x0020,0x0105), 'num_frames': (0x0028,0x0008), 'acq_time': (0x0008,0x0032), 'siemens_slices': (0x0019, 0x100a), 'TR': (0x0018,0x0080) } with nl.notify('Trying to create datasets from %s' % directory): directory = os.path.abspath(directory) if not os.path.exists(directory): nl.notify('Error: could not find %s' % directory,level=nl.level.error) return False out_file = '%s.nii.gz' % nl.prefix(os.path.basename(directory)) if os.path.exists(out_file): nl.notify('Error: file "%s" already exists!' % out_file,level=nl.level.error) return False cwd = os.getcwd() sorted_dir = tempfile.mkdtemp() try: with nl.run_in(sorted_dir): file_list = glob.glob(directory + '/*') num_reps = None new_file_list = [] for f in file_list: try: if len(info_for_tags(f,tags['num_rows']))>0: # Only include DICOMs that actually have image information new_file_list.append(f) except: pass file_list = new_file_list if len(file_list)==0: nl.notify('Error: Couldn\'t find any valid DICOM images',level=nl.level.error) return False with open('file_list.txt','w') as f: f.write('\n'.join(file_list)) try: subprocess.check_output([ 'Dimon', '-infile_list','file_list.txt', '-dicom_org', '-save_details','details', '-max_images','100000', '-fast','-no_wait', '-quit'],stderr=subprocess.STDOUT) except subprocess.CalledProcessError, e: nl.notify('Warning: Dimon returned an error while sorting images',level=nl.level.warning) else: if os.path.exists('details.2.final_list.txt'): with open('details.2.final_list.txt') as f: details = [x.strip().split() for x in f.readlines() if x[0]!='#'] file_list = [x[0] for x in details] else: nl.notify('Warning: Dimon didn\'t return expected output, unable to sort images',level=nl.level.warning)
def smooth_decon_to_fwhm(decon,fwhm,cache=True): '''takes an input :class:`Decon` object and uses ``3dBlurToFWHM`` to make the output as close as possible to ``fwhm`` returns the final measured fwhm. If ``cache`` is ``True``, will save the blurred input file (and use it again in the future)''' if os.path.exists(decon.prefix): return blur_dset = lambda dset: nl.suffix(dset,'_smooth_to_%.2f' % fwhm) with nl.notify('Running smooth_decon_to_fwhm analysis (with %.2fmm blur)' % fwhm): tmpdir = tempfile.mkdtemp() try: cwd = os.getcwd() random_files = [re.sub(r'\[\d+\]$','',str(x)) for x in nl.flatten([x for x in decon.__dict__.values() if isinstance(x,basestring) or isinstance(x,list)]+[x.values() for x in decon.__dict__.values() if isinstance(x,dict)])] files_to_copy = [x for x in random_files if os.path.exists(x) and x[0]!='/'] files_to_copy += [blur_dset(dset) for dset in decon.input_dsets if os.path.exists(blur_dset(dset))] # copy crap for file in files_to_copy: try: shutil.copytree(file,tmpdir) except OSError as e: shutil.copy(file,tmpdir) shutil.copy(file,tmpdir) copyback_files = [decon.prefix,decon.errts] with nl.run_in(tmpdir): if os.path.exists(decon.prefix): os.remove(decon.prefix) # Create the blurred inputs (or load from cache) if cache and all([os.path.exists(os.path.join(cwd,blur_dset(dset))) for dset in decon.input_dsets]): # Everything is already cached... nl.notify('Using cache\'d blurred datasets') else: # Need to make them from scratch with nl.notify('Creating blurred datasets'): old_errts = decon.errts decon.errts = 'residual.nii.gz' decon.prefix = os.path.basename(decon.prefix) # Run once in place to get the residual dataset decon.run() running_reps = 0 for dset in decon.input_dsets: info = nl.dset_info(dset) residual_dset = nl.suffix(dset,'_residual') nl.run(['3dbucket','-prefix',residual_dset,'%s[%d..%d]'%(decon.errts,running_reps,running_reps+info.reps-1)],products=residual_dset) cmd = ['3dBlurToFWHM','-quiet','-input',dset,'-blurmaster',residual_dset,'-prefix',blur_dset(dset),'-FWHM',fwhm] if decon.mask: if decon.mask=='auto': cmd += ['-automask'] else: cmd += ['-mask',decon.mask] nl.run(cmd,products=blur_dset(dset)) running_reps += info.reps if cache: copyback_files.append(blur_dset(dset)) decon.errts = old_errts decon.input_dsets = [blur_dset(dset) for dset in decon.input_dsets] for d in [decon.prefix,decon.errts]: if os.path.exists(d): try: os.remove(d) except: pass decon.run() for copyfile in copyback_files: if os.path.exists(copyfile): shutil.copy(copyfile,cwd) else: nl.notify('Warning: deconvolve did not produce expected file %s' % decon.prefix,level=nl.level.warning) except: raise finally: shutil.rmtree(tmpdir,True)