def predict(): args = get_args(request) sentence = args.get("keyword", "from ") model_name = args.get("model", "char") if model_name not in models: models[model_name] = get_model(model_name) suggestions = neural_complete(models[model_name], sentence, [0.2, 0.5, 1]) return jsonify({"data": {"results": [x.strip() for x in suggestions]}})
import os from cors import crossdomain from flask import Flask, jsonify, request from neural_complete import neural_complete from neural_complete import get_model def read_models(base_path="models/"): return set([x.split(".")[0] for x in os.listdir(base_path)]) app = Flask(__name__) models = {x: get_model(x) for x in read_models()} def get_args(req): if request.method == 'POST': args = request.json elif request.method == "GET": args = request.args return args # url设置:predict @app.route("/predict", methods=["GET", "POST", "OPTIONS"]) @crossdomain(origin='*', headers="Content-Type") # 响应函数:predict,预测 def predict(): args = get_args(request)