def train_fever_std_ema_v1(resume_model=None, do_analysis=False): """ This method is created on 26 Nov 2018 08:50 with the purpose of training vc and ss all together. :param resume_model: :param wn_feature: :return: """ num_epoch = 200 seed = 12 batch_size = 32 lazy = True train_prob_threshold = 0.02 train_sample_top_k = 8 dev_prob_threshold = 0.1 dev_sample_top_k = 5 top_k_doc = 5 schedule_sample_dict = defaultdict(lambda: 0.1) ratio_ss_for_vc = 0.2 schedule_sample_dict.update({ 0: 0.1, 1: 0.1, # 200k + 400K 2: 0.1, 3: 0.1, # 200k + 200k ~ 200k + 100k 4: 0.1, 5: 0.1, # 200k + 100k 6: 0.1 # 20k + 20k }) # Eval at beginning of the training. eval_full_epoch = 1 eval_nei_epoches = [2, 3, 4, 5, 6, 7] neg_only = False debug = False experiment_name = f"vc_ss_v17_ratio_ss_for_vc:{ratio_ss_for_vc}|t_prob:{train_prob_threshold}|top_k:{train_sample_top_k}_scheduled_neg_sampler" # resume_model = None print("Do EMA:") print("Dev prob threshold:", dev_prob_threshold) print("Train prob threshold:", train_prob_threshold) print("Train sample top k:", train_sample_top_k) # Get upstream sentence document retrieval data dev_doc_upstream_file = config.RESULT_PATH / "doc_retri/std_upstream_data_using_pageview/dev_doc.jsonl" train_doc_upstream_file = config.RESULT_PATH / "doc_retri/std_upstream_data_using_pageview/train_doc.jsonl" complete_upstream_dev_data = get_full_list(config.T_FEVER_DEV_JSONL, dev_doc_upstream_file, pred=True, top_k=top_k_doc) complete_upstream_train_data = get_full_list(config.T_FEVER_TRAIN_JSONL, train_doc_upstream_file, pred=False, top_k=top_k_doc) if debug: complete_upstream_dev_data = complete_upstream_dev_data[:1000] complete_upstream_train_data = complete_upstream_train_data[:1000] print("Dev size:", len(complete_upstream_dev_data)) print("Train size:", len(complete_upstream_train_data)) # Prepare Data token_indexers = { 'tokens': SingleIdTokenIndexer(namespace='tokens'), # This is the raw tokens 'elmo_chars': ELMoTokenCharactersIndexer( namespace='elmo_characters') # This is the elmo_characters } # Data Reader dev_fever_data_reader = VCSS_Reader(token_indexers=token_indexers, lazy=lazy, max_l=260) train_fever_data_reader = VCSS_Reader(token_indexers=token_indexers, lazy=lazy, max_l=260) # Load Vocabulary biterator = BasicIterator(batch_size=batch_size) vocab, weight_dict = load_vocab_embeddings(config.DATA_ROOT / "vocab_cache" / "nli_basic") vocab.add_token_to_namespace('true', namespace='labels') vocab.add_token_to_namespace('false', namespace='labels') vocab.add_token_to_namespace("hidden", namespace="labels") vocab.change_token_with_index_to_namespace("hidden", -2, namespace='labels') print(vocab.get_token_to_index_vocabulary('labels')) print(vocab.get_vocab_size('tokens')) biterator.index_with(vocab) # Reader and prepare end vc_ss_training_sampler = VCSSTrainingSampler(complete_upstream_train_data) vc_ss_training_sampler.show_info() # Build Model device = torch.device("cuda" if torch.cuda.is_available() else "cpu", index=0) device_num = -1 if device.type == 'cpu' else 0 model = Model(rnn_size_in=(1024 + 300 + 1, 1024 + 450 + 1), rnn_size_out=(450, 450), weight=weight_dict['glove.840B.300d'], vocab_size=vocab.get_vocab_size('tokens'), mlp_d=900, embedding_dim=300, max_l=300, num_of_class=4) print("Model Max length:", model.max_l) if resume_model is not None: model.load_state_dict(torch.load(resume_model)) model.display() model.to(device) cloned_empty_model = copy.deepcopy(model) ema: EMA = EMA(parameters=model.named_parameters()) # Create Log File file_path_prefix, date = save_tool.gen_file_prefix(f"{experiment_name}") # Save the source code. script_name = os.path.basename(__file__) with open(os.path.join(file_path_prefix, script_name), 'w') as out_f, open(__file__, 'r') as it: out_f.write(it.read()) out_f.flush() analysis_dir = None if do_analysis: analysis_dir = Path(file_path_prefix) / "analysis_aux" analysis_dir.mkdir() # Save source code end. # Staring parameter setup best_dev = -1 iteration = 0 start_lr = 0.0001 optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=start_lr) criterion = nn.CrossEntropyLoss() # parameter setup end for i_epoch in range(num_epoch): print("Resampling...") # This is for train # This is for sample candidate data for from result of ss for vc. # This we will need to do after each epoch. if i_epoch == eval_full_epoch: # only eval at 1 print("We now need to eval the whole training set.") print("Be patient and hope good luck!") load_ema_to_model(cloned_empty_model, ema) eval_sent_for_sampler(cloned_empty_model, token_indexers, vocab, vc_ss_training_sampler) elif i_epoch in eval_nei_epoches: # at 2, 3, 4 eval for NEI print("We now need to eval the NEI training set.") print("Be patient and hope good luck!") load_ema_to_model(cloned_empty_model, ema) eval_sent_for_sampler(cloned_empty_model, token_indexers, vocab, vc_ss_training_sampler, nei_only=True) train_data_with_candidate_sample_list = vc_ss.data_wrangler.sample_sentences_for_vc_with_nei( config.T_FEVER_TRAIN_JSONL, vc_ss_training_sampler.sent_list, train_prob_threshold, train_sample_top_k) # We initialize the prob for each sentence so the sampler can work, but we will need to run the model for dev data to work. train_selection_dict = paired_selection_score_dict( vc_ss_training_sampler.sent_list) cur_train_vc_data = adv_simi_sample_with_prob_v1_1( config.T_FEVER_TRAIN_JSONL, train_data_with_candidate_sample_list, train_selection_dict, tokenized=True) if do_analysis: # Customized analysis output common.save_jsonl( vc_ss_training_sampler.sent_list, analysis_dir / f"E_{i_epoch}_whole_train_sent_{save_tool.get_cur_time_str()}.jsonl" ) common.save_jsonl( train_data_with_candidate_sample_list, analysis_dir / f"E_{i_epoch}_sampled_train_sent_{save_tool.get_cur_time_str()}.jsonl" ) common.save_jsonl( cur_train_vc_data, analysis_dir / f"E_{i_epoch}_train_vc_data_{save_tool.get_cur_time_str()}.jsonl" ) print(f"E{i_epoch} VC_data:", len(cur_train_vc_data)) # This is for sample negative candidate data for ss # After sampling, we decrease the ratio. neg_sample_upper_prob = schedule_sample_dict[i_epoch] print("Neg Sampler upper rate:", neg_sample_upper_prob) # print("Rate decreasing") # neg_sample_upper_prob -= decay_r neg_sample_upper_prob = max(0.000, neg_sample_upper_prob) cur_train_ss_data = vc_ss_training_sampler.sample_for_ss( neg_only=neg_only, upper_prob=neg_sample_upper_prob) if i_epoch >= 1: # if epoch num >= 6 we balance pos and neg example for selection # new_ss_data = [] pos_ss_data = [] neg_ss_data = [] for item in cur_train_ss_data: if item['selection_label'] == 'true': pos_ss_data.append(item) elif item['selection_label'] == 'false': neg_ss_data.append(item) ss_sample_size = min(len(pos_ss_data), len(neg_ss_data)) random.shuffle(pos_ss_data) random.shuffle(neg_ss_data) cur_train_ss_data = pos_ss_data[:int( ss_sample_size * 0.5)] + neg_ss_data[:ss_sample_size] random.shuffle(cur_train_ss_data) vc_ss_training_sampler.show_info(cur_train_ss_data) print(f"E{i_epoch} SS_data:", len(cur_train_ss_data)) vc_ss.data_wrangler.assign_task_label(cur_train_ss_data, 'ss') vc_ss.data_wrangler.assign_task_label(cur_train_vc_data, 'vc') vs_ss_train_list = cur_train_ss_data + cur_train_vc_data random.shuffle(vs_ss_train_list) print(f"E{i_epoch} Total ss+vc:", len(vs_ss_train_list)) vc_ss_instance = train_fever_data_reader.read(vs_ss_train_list) train_iter = biterator(vc_ss_instance, shuffle=True, num_epochs=1) for i, batch in tqdm(enumerate(train_iter)): model.train() out = model(batch) if i_epoch >= 1: ratio_ss_for_vc = 0.8 loss = compute_mixing_loss( model, out, batch, criterion, vc_ss_training_sampler, ss_for_vc_prob=ratio_ss_for_vc) # Important change # No decay optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 # EMA update ema(model.named_parameters()) if i_epoch < 9: mod = 10000 # mod = 100 else: mod = 2000 if iteration % mod == 0: # This is the code for eval: load_ema_to_model(cloned_empty_model, ema) vc_ss.data_wrangler.assign_task_label( complete_upstream_dev_data, 'ss') dev_ss_instance = dev_fever_data_reader.read( complete_upstream_dev_data) eval_ss_iter = biterator(dev_ss_instance, num_epochs=1, shuffle=False) scored_dev_sent_data = hidden_eval_ss( cloned_empty_model, eval_ss_iter, complete_upstream_dev_data) # for vc filtered_dev_list = vc_ss.data_wrangler.sample_sentences_for_vc_with_nei( config.T_FEVER_DEV_JSONL, scored_dev_sent_data, dev_prob_threshold, dev_sample_top_k) dev_selection_dict = paired_selection_score_dict( scored_dev_sent_data) ready_dev_list = select_sent_with_prob_for_eval( config.T_FEVER_DEV_JSONL, filtered_dev_list, dev_selection_dict, tokenized=True) vc_ss.data_wrangler.assign_task_label(ready_dev_list, 'vc') dev_vc_instance = dev_fever_data_reader.read(ready_dev_list) eval_vc_iter = biterator(dev_vc_instance, num_epochs=1, shuffle=False) eval_dev_result_list = hidden_eval_vc(cloned_empty_model, eval_vc_iter, ready_dev_list) # Scoring eval_mode = {'check_sent_id_correct': True, 'standard': True} strict_score, acc_score, pr, rec, f1 = c_scorer.fever_score( eval_dev_result_list, common.load_jsonl(config.T_FEVER_DEV_JSONL), mode=eval_mode, verbose=False) print("Fever Score(Strict/Acc./Precision/Recall/F1):", strict_score, acc_score, pr, rec, f1) print(f"Dev:{strict_score}/{acc_score}") if do_analysis: # Customized analysis output common.save_jsonl( scored_dev_sent_data, analysis_dir / f"E_{i_epoch}_scored_dev_sent_{save_tool.get_cur_time_str()}.jsonl" ) common.save_jsonl( eval_dev_result_list, analysis_dir / f"E_{i_epoch}_eval_vc_output_data_{save_tool.get_cur_time_str()}.jsonl" ) need_save = False if strict_score > best_dev: best_dev = strict_score need_save = True if need_save or i_epoch < 7: # save_path = os.path.join( # file_path_prefix, # f'i({iteration})_epoch({i_epoch})_dev({strict_score})_lacc({acc_score})_seed({seed})' # ) # torch.save(model.state_dict(), save_path) ema_save_path = os.path.join( file_path_prefix, f'ema_i({iteration})_epoch({i_epoch})_dev({strict_score})_lacc({acc_score})_p({pr})_r({rec})_f1({f1})_seed({seed})' ) save_ema_to_file(ema, ema_save_path)
def train_fever_std_ema_v1(resume_model=None, wn_feature=False): """ This method is the new training script for train fever with span and probability score. :param resume_model: :param wn_feature: :return: """ num_epoch = 200 seed = 12 batch_size = 32 lazy = True dev_prob_threshold = 0.1 train_prob_threshold = 0.1 train_sample_top_k = 8 experiment_name = f"nsmn_sent_wise_std_ema_lr1|t_prob:{train_prob_threshold}|top_k:{train_sample_top_k}" # resume_model = None print("Do EMA:") print("Dev prob threshold:", dev_prob_threshold) print("Train prob threshold:", train_prob_threshold) print("Train sample top k:", train_sample_top_k) dev_upstream_sent_list = common.load_jsonl( config.RESULT_PATH / "sent_retri_nn/balanced_sentence_selection_results/dev_sent_pred_scores.jsonl" ) train_upstream_sent_list = common.load_jsonl( config.RESULT_PATH / "sent_retri_nn/balanced_sentence_selection_results/train_sent_scores.jsonl" ) # Prepare Data token_indexers = { 'tokens': SingleIdTokenIndexer(namespace='tokens'), # This is the raw tokens 'elmo_chars': ELMoTokenCharactersIndexer( namespace='elmo_characters') # This is the elmo_characters } print("Building Prob Dicts...") train_sent_list = common.load_jsonl( config.RESULT_PATH / "sent_retri_nn/balanced_sentence_selection_results/train_sent_scores.jsonl" ) dev_sent_list = common.load_jsonl( config.RESULT_PATH / "sent_retri_nn/balanced_sentence_selection_results/dev_sent_pred_scores.jsonl" ) selection_dict = paired_selection_score_dict(train_sent_list) selection_dict = paired_selection_score_dict(dev_sent_list, selection_dict) upstream_dev_list = threshold_sampler_insure_unique( config.T_FEVER_DEV_JSONL, dev_upstream_sent_list, prob_threshold=dev_prob_threshold, top_n=5) # Specifiy ablation to remove wordnet and number embeddings. dev_fever_data_reader = WNSIMIReader(token_indexers=token_indexers, lazy=lazy, wn_p_dict=p_dict, max_l=320, ablation=None) train_fever_data_reader = WNSIMIReader(token_indexers=token_indexers, lazy=lazy, wn_p_dict=p_dict, max_l=320, shuffle_sentences=False, ablation=None) complete_upstream_dev_data = select_sent_with_prob_for_eval( config.T_FEVER_DEV_JSONL, upstream_dev_list, selection_dict, tokenized=True) dev_instances = dev_fever_data_reader.read(complete_upstream_dev_data) # Load Vocabulary biterator = BasicIterator(batch_size=batch_size) vocab, weight_dict = load_vocab_embeddings(config.DATA_ROOT / "vocab_cache" / "nli_basic") vocab.change_token_with_index_to_namespace('hidden', -2, namespace='labels') print(vocab.get_token_to_index_vocabulary('labels')) print(vocab.get_vocab_size('tokens')) biterator.index_with(vocab) # Build Model device = torch.device("cuda" if torch.cuda.is_available() else "cpu", index=0) device_num = -1 if device.type == 'cpu' else 0 model = Model( rnn_size_in=(1024 + 300 + dev_fever_data_reader.wn_feature_size, 1024 + 450 + dev_fever_data_reader.wn_feature_size), rnn_size_out=(450, 450), weight=weight_dict['glove.840B.300d'], vocab_size=vocab.get_vocab_size('tokens'), mlp_d=900, embedding_dim=300, max_l=300, use_extra_lex_feature=False, max_span_l=100) print("Model Max length:", model.max_l) if resume_model is not None: model.load_state_dict(torch.load(resume_model)) model.display() model.to(device) cloned_empty_model = copy.deepcopy(model) ema: EMA = EMA(parameters=model.named_parameters()) # Create Log File file_path_prefix, date = save_tool.gen_file_prefix(f"{experiment_name}") # Save the source code. script_name = os.path.basename(__file__) with open(os.path.join(file_path_prefix, script_name), 'w') as out_f, open(__file__, 'r') as it: out_f.write(it.read()) out_f.flush() # Save source code end. best_dev = -1 iteration = 0 start_lr = 0.0001 optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=start_lr) criterion = nn.CrossEntropyLoss() for i_epoch in range(num_epoch): print("Resampling...") # Resampling train_data_with_candidate_sample_list = \ threshold_sampler_insure_unique(config.T_FEVER_TRAIN_JSONL, train_upstream_sent_list, train_prob_threshold, top_n=train_sample_top_k) complete_upstream_train_data = adv_simi_sample_with_prob_v1_1( config.T_FEVER_TRAIN_JSONL, train_data_with_candidate_sample_list, selection_dict, tokenized=True) print("Sample data length:", len(complete_upstream_train_data)) sampled_train_instances = train_fever_data_reader.read( complete_upstream_train_data) train_iter = biterator(sampled_train_instances, shuffle=True, num_epochs=1, cuda_device=device_num) for i, batch in tqdm(enumerate(train_iter)): model.train() out = model(batch) y = batch['label'] loss = criterion(out, y) # No decay optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 # EMA update ema(model.named_parameters()) if i_epoch < 15: mod = 10000 # mod = 10 else: mod = 2000 if iteration % mod == 0: # eval_iter = biterator(dev_instances, shuffle=False, num_epochs=1, cuda_device=device_num) # complete_upstream_dev_data = hidden_eval(model, eval_iter, complete_upstream_dev_data) # # eval_mode = {'check_sent_id_correct': True, 'standard': True} # strict_score, acc_score, pr, rec, f1 = c_scorer.fever_score(complete_upstream_dev_data, # common.load_jsonl(config.T_FEVER_DEV_JSONL), # mode=eval_mode, # verbose=False) # print("Fever Score(Strict/Acc./Precision/Recall/F1):", strict_score, acc_score, pr, rec, f1) # # print(f"Dev:{strict_score}/{acc_score}") # EMA saving eval_iter = biterator(dev_instances, shuffle=False, num_epochs=1, cuda_device=device_num) load_ema_to_model(cloned_empty_model, ema) complete_upstream_dev_data = hidden_eval( cloned_empty_model, eval_iter, complete_upstream_dev_data) eval_mode = {'check_sent_id_correct': True, 'standard': True} strict_score, acc_score, pr, rec, f1 = c_scorer.fever_score( complete_upstream_dev_data, common.load_jsonl(config.T_FEVER_DEV_JSONL), mode=eval_mode, verbose=False) print("Fever Score EMA(Strict/Acc./Precision/Recall/F1):", strict_score, acc_score, pr, rec, f1) print(f"Dev EMA:{strict_score}/{acc_score}") need_save = False if strict_score > best_dev: best_dev = strict_score need_save = True if need_save: # save_path = os.path.join( # file_path_prefix, # f'i({iteration})_epoch({i_epoch})_dev({strict_score})_lacc({acc_score})_seed({seed})' # ) # torch.save(model.state_dict(), save_path) ema_save_path = os.path.join( file_path_prefix, f'ema_i({iteration})_epoch({i_epoch})_dev({strict_score})_lacc({acc_score})_seed({seed})' ) save_ema_to_file(ema, ema_save_path)
def train_fever_v2(): # train_fever_v1 is the old training script. # train_fever_v2 is the new training script created on 02 Oct 2018 11:40:24. # Here we keep the negative and positive portion to be consistent. num_epoch = 10 seed = 12 batch_size = 128 lazy = True torch.manual_seed(seed) keep_neg_sample_prob = 1 top_k_doc = 5 experiment_name = f"simple_nn_remain_{keep_neg_sample_prob}" # sample_prob_decay = 0.05 dev_upstream_file = config.RESULT_PATH / "doc_retri/std_upstream_data_using_pageview/dev_doc.jsonl" train_upstream_file = config.RESULT_PATH / "doc_retri/std_upstream_data_using_pageview/train_doc.jsonl" # Prepare Data token_indexers = { 'tokens': SingleIdTokenIndexer(namespace='tokens'), # This is the raw tokens 'elmo_chars': ELMoTokenCharactersIndexer( namespace='elmo_characters') # This is the elmo_characters } train_fever_data_reader = SSelectorReader(token_indexers=token_indexers, lazy=lazy, max_l=180) # dev_fever_data_reader = SSelectorReader(token_indexers=token_indexers, lazy=False) dev_fever_data_reader = SSelectorReader(token_indexers=token_indexers, lazy=lazy, max_l=180) complete_upstream_dev_data = get_full_list(config.T_FEVER_DEV_JSONL, dev_upstream_file, pred=True, top_k=top_k_doc) print("Dev size:", len(complete_upstream_dev_data)) dev_instances = dev_fever_data_reader.read(complete_upstream_dev_data) # Load Vocabulary biterator = BasicIterator(batch_size=batch_size) dev_biterator = BasicIterator(batch_size=batch_size) vocab, weight_dict = load_vocab_embeddings(config.DATA_ROOT / "vocab_cache" / "nli_basic") # THis is important vocab.add_token_to_namespace("true", namespace="selection_labels") vocab.add_token_to_namespace("false", namespace="selection_labels") vocab.add_token_to_namespace("hidden", namespace="selection_labels") vocab.change_token_with_index_to_namespace("hidden", -2, namespace='selection_labels') # Label value vocab.get_index_to_token_vocabulary('selection_labels') print(vocab.get_token_to_index_vocabulary('selection_labels')) print(vocab.get_vocab_size('tokens')) biterator.index_with(vocab) dev_biterator.index_with(vocab) # exit(0) # Build Model device = torch.device("cuda" if torch.cuda.is_available() else "cpu", index=0) device_num = -1 if device.type == 'cpu' else 0 model = Model(weight=weight_dict['glove.840B.300d'], vocab_size=vocab.get_vocab_size('tokens'), embedding_dim=300, max_l=160, num_of_class=2) model.display() model.to(device) cloned_empty_model = copy.deepcopy(model) ema: EMA = EMA(parameters=model.named_parameters()) # Create Log File file_path_prefix, date = save_tool.gen_file_prefix(f"{experiment_name}") # Save the source code. script_name = os.path.basename(__file__) with open(os.path.join(file_path_prefix, script_name), 'w') as out_f, open(__file__, 'r') as it: out_f.write(it.read()) out_f.flush() # Save source code end. best_dev = -1 iteration = 0 start_lr = 0.0002 optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=start_lr) criterion = nn.CrossEntropyLoss() dev_actual_list = common.load_jsonl(config.T_FEVER_DEV_JSONL) for i_epoch in range(num_epoch): print("Resampling...") # Resampling complete_upstream_train_data = get_full_list( config.T_FEVER_TRAIN_JSONL, train_upstream_file, pred=False, top_k=top_k_doc) print("Sample Prob.:", keep_neg_sample_prob) filtered_train_data = post_filter(complete_upstream_train_data, keep_prob=keep_neg_sample_prob, seed=12 + i_epoch) # Change the seed to avoid duplicate sample... # keep_neg_sample_prob -= sample_prob_decay # if keep_neg_sample_prob <= 0: # keep_neg_sample_prob = 0.005 print("Sampled_length:", len(filtered_train_data)) sampled_train_instances = train_fever_data_reader.read( filtered_train_data) train_iter = biterator(sampled_train_instances, shuffle=True, num_epochs=1, cuda_device=device_num) for i, batch in tqdm(enumerate(train_iter)): model.train() out = model(batch) y = batch['selection_label'] loss = criterion(out, y) # No decay optimizer.zero_grad() loss.backward() optimizer.step() # Update EMA ema(model.named_parameters()) iteration += 1 if i_epoch <= 5: mod = 8000 else: mod = 8000 if iteration % mod == 0: eval_iter = dev_biterator(dev_instances, shuffle=False, num_epochs=1, cuda_device=device_num) load_ema_to_model(cloned_empty_model, ema) # complete_upstream_dev_data = hidden_eval(model, eval_iter, complete_upstream_dev_data) # Only eval EMA complete_upstream_dev_data = hidden_eval( cloned_empty_model, eval_iter, complete_upstream_dev_data) dev_results_list = score_converter_v1( config.T_FEVER_DEV_JSONL, complete_upstream_dev_data, sent_retri_top_k=5, sent_retri_scal_prob=0.5) # This is only a wrapper for the simi_sampler eval_mode = {'check_sent_id_correct': True, 'standard': True} for a, b in zip(dev_actual_list, dev_results_list): b['predicted_label'] = a['label'] strict_score, acc_score, pr, rec, f1 = c_scorer.fever_score( dev_results_list, dev_actual_list, mode=eval_mode, verbose=False) tracking_score = strict_score print(f"Dev(raw_acc/pr/rec/f1):{acc_score}/{pr}/{rec}/{f1}") print("Strict score:", strict_score) print(f"Eval Tracking score:", f"{tracking_score}") # need_save = False # if tracking_score > best_dev: # best_dev = tracking_score need_save = True if need_save: save_path = os.path.join( file_path_prefix, f'i({iteration})_epoch({i_epoch})_' f'(tra_score:{tracking_score}|raw_acc:{acc_score}|pr:{pr}|rec:{rec}|f1:{f1})_ema' ) save_ema_to_file(ema, save_path) # torch.save(model.state_dict(), save_path) print("Epoch Evaluation...") eval_iter = dev_biterator(dev_instances, shuffle=False, num_epochs=1, cuda_device=device_num) load_ema_to_model(cloned_empty_model, ema) # complete_upstream_dev_data = hidden_eval(model, eval_iter, complete_upstream_dev_data) complete_upstream_dev_data = hidden_eval(cloned_empty_model, eval_iter, complete_upstream_dev_data) dev_results_list = score_converter_v1(config.T_FEVER_DEV_JSONL, complete_upstream_dev_data, sent_retri_top_k=5, sent_retri_scal_prob=0.5) eval_mode = {'check_sent_id_correct': True, 'standard': True} for a, b in zip(dev_actual_list, dev_results_list): b['predicted_label'] = a['label'] strict_score, acc_score, pr, rec, f1 = c_scorer.fever_score( dev_results_list, dev_actual_list, mode=eval_mode, verbose=False) tracking_score = strict_score print(f"Dev(raw_acc/pr/rec/f1):{acc_score}/{pr}/{rec}/{f1}") print("Strict score:", strict_score) print(f"Eval Tracking score:", f"{tracking_score}") if tracking_score > best_dev: best_dev = tracking_score save_path = os.path.join( file_path_prefix, f'i({iteration})_epoch({i_epoch})_' f'(tra_score:{tracking_score}|raw_acc:{acc_score}|pr:{pr}|rec:{rec}|f1:{f1})_epoch_ema' ) save_ema_to_file(ema, save_path)