temp.append(float(input("How much % alcohol did your drink have? \n"))) temp.append(float(input("How much ml of you drink did you have? \n"))) user_info.append(temp) a.array(temp[3], temp[2], temp[0], hunger) a.plot() e = Eliminator(user_info[0][3]) e.elimination() e.plot() elimination_array = np.load("eliminated_array.npy") elim_time = np.array(elimination_array[minute], ndmin=2) bac_array.append(elimination_array[minute]) # trains neural network every 5 inputs and lets it predict the drunkeness user_input_array.append(how_drunk) if len(bac_array) % 5 == 0: neural_network.learn(bac_array, user_input_array) if len(bac_array) == 1: neural_network.learn(bac_array, user_input_array) prediction = neural_network.predict(elim_time) print(prediction) np.save("drinking_session.npy", user_info) # informs the elimination rate adjuster on how the elimination rate will have to be adjusted elif decision == 2: sober_time = 0 min = int(input("How many minutes ago did you sober up? \n")) sober_time = minute - min e.adjustment(sober_time) elif decision == 3: time = input("What time is it? (enter in hh:mm format) \n") hour = int((time[0] + time[1]))
if __name__ == "__main__": batch, output = 10, 3 train_percent = 80 episodes = int(1e3) learning_rate = 1e-2 encoding = [("setosa", 0), ("versicolor", 1), ("virginica", 2)] X, y = network.extract("iris.csv", encoding=encoding, output=output, label="species") dimension = len(X[0]) neurons = [dimension, 10, 20, 20, 5, output] trainer, tester, validater = network.partition(X, y, output, batch, train_percent) activity = ["relu", "relu", "relu", "relu", ""] cost = "crossentropy" optimizer = "adam" model, error, accuracy = network.learn(trainer, neurons, activity, learning_rate, episodes, cost, optimizer) network.plot( error, "forestgreen", "accumulated_errors_over_each_epoch_multilabel_classification", "Episode", "Error") network.plot(accuracy, "mediumvioletred", "accuracy_over_each_epoch_multilabel_classification", "Episode", "Learning accuracy") network.test(model, tester, output)
import neural_network as network if __name__ == "__main__": X, y = network.extract("mnist", "MNIST") Y = [element.item() for element in y] output, window = len(list(set(Y))), 3 batch, train_percent = 32, 80 episodes, learning_rate = 10, 5e-3 trainer, tester, validater = network.partition(X, y, output, batch, train_percent) height, channel = X[0].shape[-1], X[0].shape[0] kernel, stride, padding = [5, 5], [1, 1], [1, 1] convolutions = [channel, 10, 20] neurons = [50, output] activity = ["relu", "relu"] activity += ["relu", ""] cost = "crossentropy" optimizer = "adam" model, error, accuracy = network.learn(trainer, neurons, activity, learning_rate, episodes, cost, optimizer, kernel, stride, padding, height, window, convolutions) network.plot(error, "forestgreen", "accumulated_error_over_each_epoch_mnist_classification_cnn", "Episode", "Error") network.plot(accuracy, "mediumvioletred", "accuracy_over_each_epoch_mnist_classification_cnn", "Episode", "Learning accuracy") network.test(model, tester, output, True)